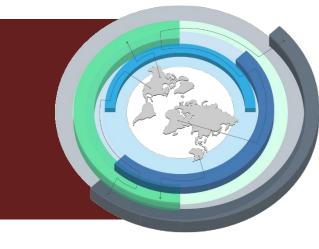
Bulk Energy Storage Technology Overview Presentation to LIPA Board of Trustees

Dr. Andrew Maxson Program Manager

Horst Hack Technical Executive

March 30, 2022


 Image: Market and the second state and th

Agenda

- Energy storage background
 - Drivers for bulk energy storage
 - High level use cases
 - Benefits of a spectrum of energy storage technologies
- Review of emerging energy storage technologies
- Conclusions
- Discussion / Questions?

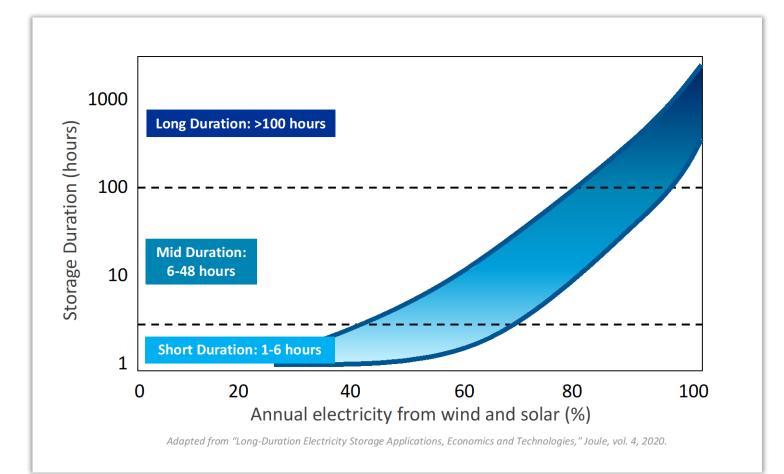
Please feel free to ask questions throughout

Energy Storage Background

© 2022 Electric Power Research Institute, Inc. All rights reserved.

Need for Energy Storage

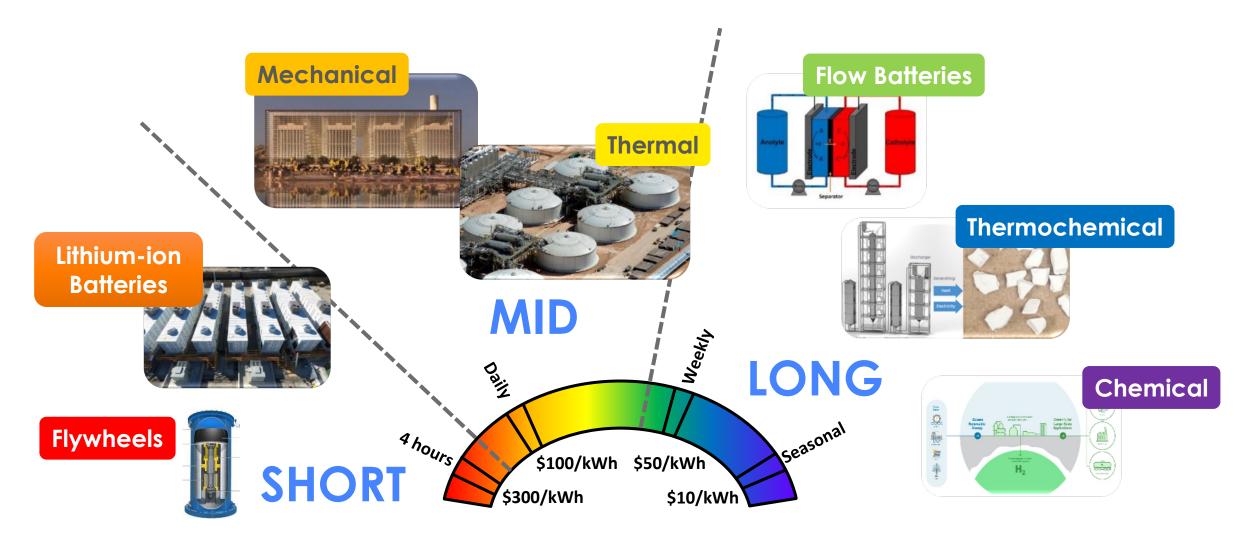
Enabler	 Energy storage is an enabler for a low-carbon future. As more renewables are installed, it will be needed to help 				
	provide grid stability and reliability.				
Need	A substantial amount will be needed: 125–680 GWs of new energy storage is projected for the U.S. by 2050.* Globally, energy storage is also predicted to grow significantly.				
	* "Economic Potential of Diurnal Storage in the U.S. Power Sector," NREL, July 2021.				
Options	 Energy storage comes in a variety of types and durations and will have different use cases 				
What types of energy storage will be needed?					


Energy Storage Evolution

As intermittent renewables increase, the duration of energy storage needed also increases

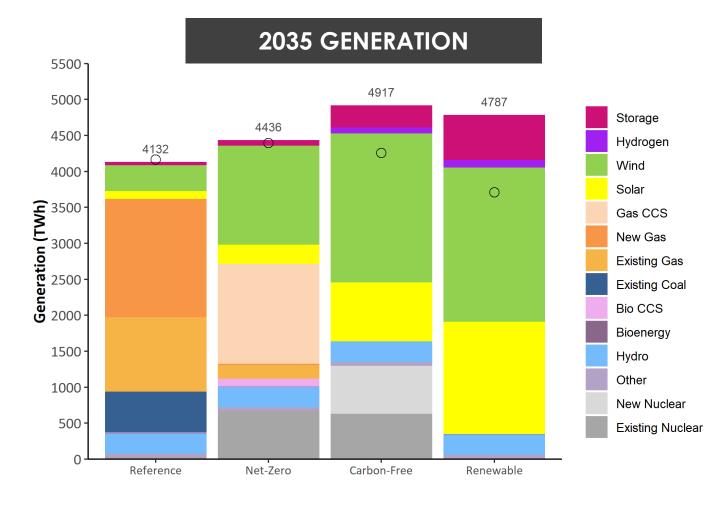
As storage duration increases, different types of energy storage are needed

Different durations of energy storage will be required


Energy Storage Types

- +	J		H ₂		
Electrochemical	Thermal	Mechanical	Chemical		
Reversible chemical reaction generates an electrical potential difference	Energy storage achieved by heating bulk media	Kinetic or potential (compression or gravitational)	Reaction produces product that can generate heat or power		

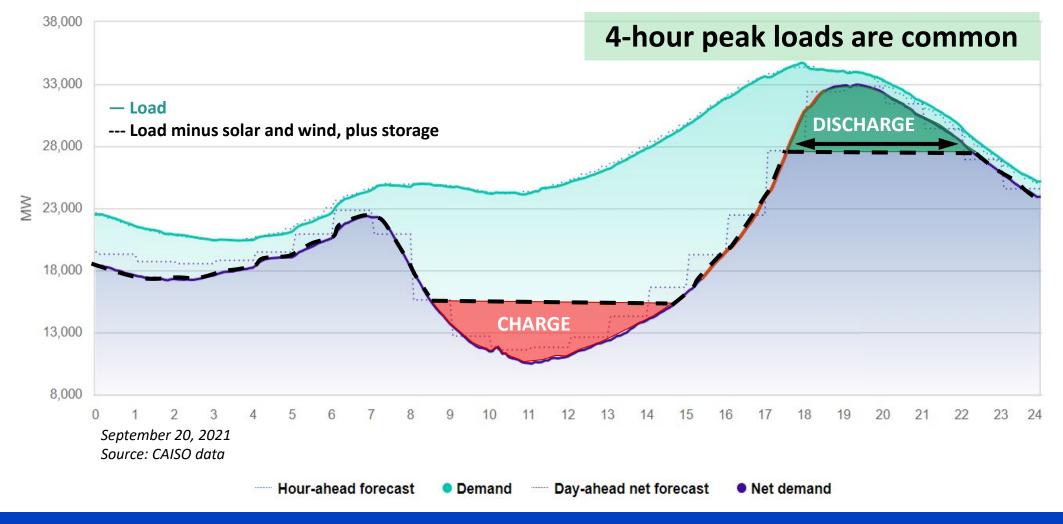
Different types for different purposes


Energy Storage Spectrum

Different technologies are best suited for each duration type

Energy Storage Can Play a Major Role

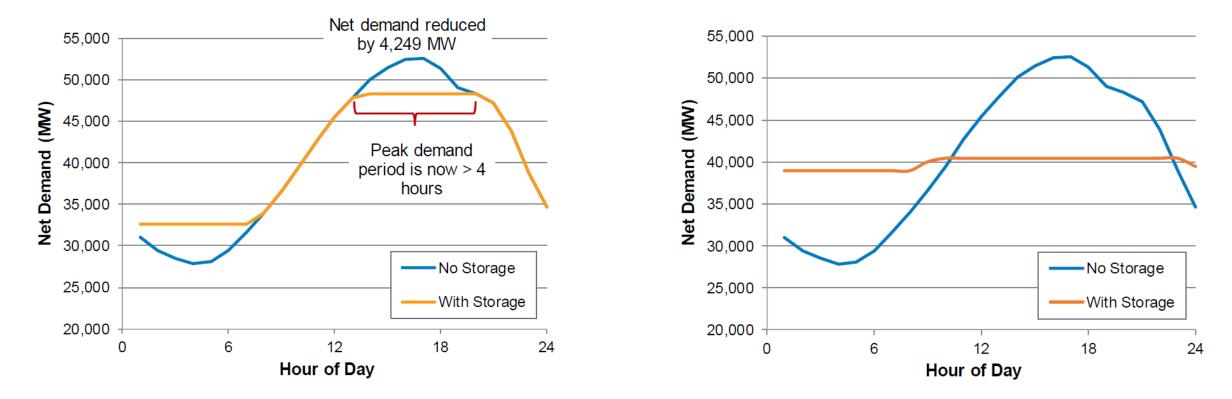
- Reference: Fossil continues to provide the majority of electricity
- Net-Zero: CO₂ capture and storage enables fossil to balance renewables
- Carbon-Free: Storage + H₂ important for balancing wind and solar and provide 9% of electricity demand
- Renewables: Storage + H₂ generation are 627 and 108 TWh and provide
 <u>20% of electricity demand</u>


Based on an EPRI REGEN study done last year

LIPA's Energy Storage Roadmap

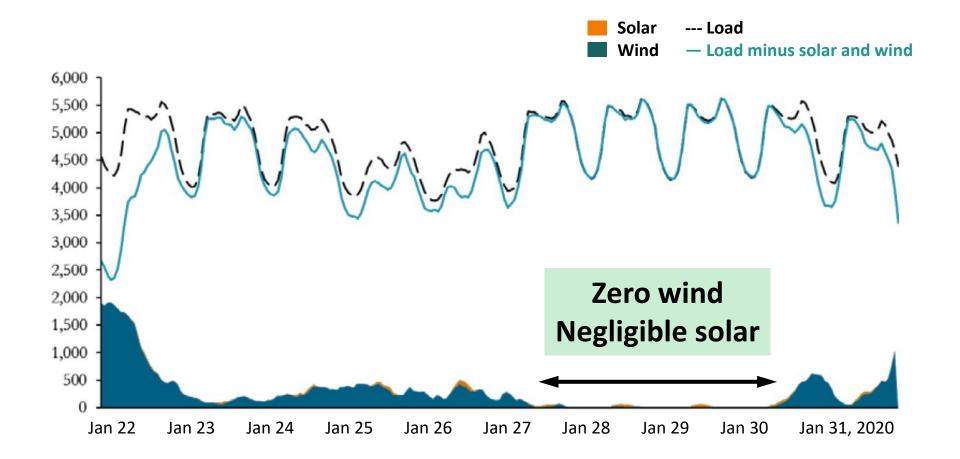
- Achieve LIPA's share of the State Climate Act targets
 - 10 MW of utility-scale storage in-service on East End
 - 2.5 MW planned for distribution substations
 - 175 MW of new utility-scale storage by 2025
 - 375 MW by 2030
- Use competitive procurements
- Uncover and reward locational and time values
- Streamline permitting and siting, lower soft costs
- Access to NYSERDA bridge incentives for customer-sited storage

Storage Use Case: 4-Hour (short duration)



Daily peak loads served by 4-hour storage

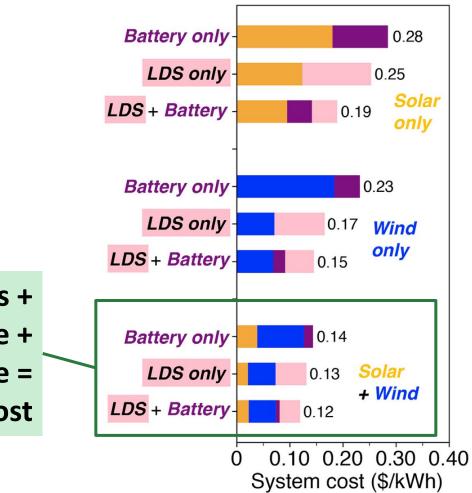
Storage Use Case: Daily (short- to mid-duration)


 Increased deployment of 4-hour storage broadens the peak load and drives the need for longer-duration storage up to ~12 hours

Source: Denholm et al., "The four phases of storage deployment," NREL, 2021.

EPR

Storage Use Case: Weekly (mid- to long-duration)


Source: Upper Midwest Integrated Resource Plan, Xcel Energy, 2020.

Multi-day renewable droughts are common

Energy Storage Spectrum Value

 A portfolio of energy storage durations and types is a <u>lower-cost</u> <u>solution</u> than a single-duration type

> Renewables + short-duration storage + longer-duration storage = Lowest system cost

Source: Dowling et al., "Role of long-duration energy storage in variable renewable electricity systems," Joule, vol. 4, 2021.

A portfolio of energy storage technologies is optimal

Review of Energy Storage Technologies

Technology Readiness Level (TRL)

Molten-Salt Thermal Energy Storage

How It Works:

Molten salt is heated and stored during off-peak hours; when energy is needed, salt is pumped to a steam generator to generate steam for a power cycle

 Benefits: High specific heat capacity, density, and thermal stability and low vapor pressure Non-flammable and non-toxic 	 Challenges: High cost of storage media Operating within freezing and decomposition temperatures 				Source: Caldwell Tanks
Applications:		Vital Statistics			
 Conversion of thermal energy to electricity in steam cycles using existing or decommissioned power units Application to other technologies that need TES, e.g., pumped heat energy storage 		AC RTE:	35–41%	TRL:	9
		Life:	30 years	Installed Capacity:	100s MWh (solar)

Crushed Rock Thermal Energy Storage

How It Works:

When charging, electrical resistive heaters are used to heat air and blow through a bunker of crushed rock. To discharge the system, air is blown through the hot rock to extract heat. Hot air is used to generate steam for a steam turbine generator.

Benefits:	Challenges:	
 Small plant footprint System inertia Zero fire risk, inert, and low-cost material 	 Cost of electrical and steam integration Shorter plant lifetime than other TES solutions high auxiliary power during discharge Risk of thermal ratcheting in media 	
Applications:		
Conversion of thermal energy to electricity in steam cycles using existing or decommissioned power units		

plications:	Vital Statistics			
nversion of thermal energy to electricity in steam cycles ng existing or decommissioned power units		35–45%	TRL:	6
		>20 years	Largest Pilot:	130 MWhth

Concrete Thermal Energy Storage

How It Works:

When charging, concrete is heated by resistive electrical elements using a heat transfer fluid. To discharge the system, air is blown through channels in the concrete to extract heat. The hot air is then used to generate steam for a steam turbine generator.

				the state of the s		
Benefits:	Challenges:					
 Stackable, delivering a small plant footprint System inertia Zero fire risk, inert, and low-cost material 	 Cost of electrical and steam integration Shorter plant lifetime than other TES solutions 	Every storworks Pov				
Applications:		Vital Statistics				
 Conversion of thermal energy to electricity in steam cycles using existing or decommissioned power units Can be heated via steam, flue gas, or directly with electricity 		AC RTE:	35–45%	TRL:	5	
		Life:	20 years	Largest Pilot:	10 MWh-e	

Liquid Air Energy Storage

How It Works:

Air is compressed and cooled to liquid state to allow above-ground storage at low pressure. When power is needed, the liquid air is pressurized, reheated at high pressure and expanded to produce power.

Benefits:	Challenges:	
 Low fire risk and no toxic materials Small plant footprint and mature components System inertia 	 Cost Thermal management 	
Applications:		
Standalone energy storage power units	or integration with existing	AC RT
		Life

s:	Vital Statistics					
energy storage or integration with existing	AC RTE:	50–60%	TRL:	7		
	Life:	30 years	Largest Pilot:	15 MWh		

Low-Carbon Fuel Energy Storage

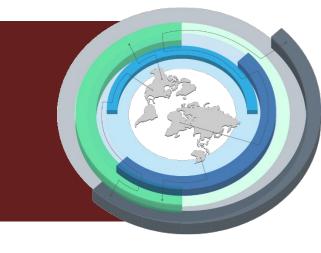
How It Works:

Low-carbon fuel (e.g., hydrogen, ammonia, bio-fuel) is produced through fossil conversion or electrolysis, stored and delivered, and then used for transportation or power generation (via boilers, engines, fuel cells, or turbines)		Water	- Pro - Pro-	H H H H Ammonia	arrac			Fuel Colls	
Benefits:	Challenges:				Pip	elines			
 Can provide longer- duration energy storage Potential to use existing infrastructure Can be applied to hard- to-decarbonize sources 	 Potential storage and delivery issues Safety Cost Low efficiency 	Coal / Biomass Gas	forming ification eation	Hydrogen H ₂ Hydrides Conversion		pping	Underground	Gas Turbines Gas Turbines Engines Engines Boilers Generation	→ Power
Applications:		Vital Statistics							
Standalone, ultra-long duration energy storage (up to seasonal)		AC RTE: 20–25%			TRL:		5–9 (depends on application)		
		Life:	30 ye	ears		Largest Pilot:	t Mul	tiple	

Conclusions

All Durations

 Consider all durations and types of storage available and emerging in the resource planning process


Portfolio

 A portfolio of energy storage technologies is better than deploying only one

Spectrum

 Ultimately, a spectrum of energy storage will be needed: short-, mid-, and long-duration

Discussion / Questions?

Together...Shaping the Future of Energy®