FOR CONSIDERATION
February 24, 2021

TO: The Board of Trustees

FROM: Thomas Falcone

SUBJECT: Consideration of the Adoption of PSEG Long Island Implementation Plans for Isaias Task Force Report Recommendations

Requested Action

The Board of Trustees (the “Board”) of the Long Island Power Authority (“LIPA”) is requested to approve a resolution adopting certain PSEG Long Island Implementation Plans for the Isaias Task Force (the “Task Force”) Recommendations, which resolution is attached hereto as Exhibit “A”.

Background

On Tuesday, August 4, 2020, Tropical Storm Isaias landed on Long Island with rain and wind gusts of up to 70 miles per hour. The resulting damage to the electrical system caused approximately 646,000 customer outages.

On August 5, LIPA’s Chief Executive Officer initiated an independent investigation of the circumstances and root causes that led to well-documented lapses in PSEG Long Island’s storm response. The Task Force was charged with providing actionable recommendations and overseeing PSEG Long Island’s remediation activities. LIPA committed to reporting the Task Force’s findings and recommendations to the LIPA Board of Trustees and the public in a 30-Day Preliminary Report, 90-Day Interim Report. There will also be a Final Report in May 2021.

The Task Force presented the 30-Day Report to LIPA’s Board of Trustees at the September 23, 2020 Board Meeting and released it to the public. Because of the urgency of the immediate threat of another major storm, the 30-Day Report focused on the failures of PSEG Long Island’s information technology and communication systems and their proximate causes.

On November 13, DPS provided a recommendation (the “DPS Recommendation”) to the LIPA Board as a result of its ongoing investigation of PSEG Long Island’s storm response. DPS Staff identified more than 70 potential violations of PSEG Long Island’s ERP. The DPS recommended, among other things, that LIPA:

- evaluate options to terminate PSEG Long Island as LIPA’s Service Provider;
- declare PSEG Long Island’s poor performance during Isaias as a first failure of the Major Storm Performance Metric as defined in the OSA; and
- seek to either terminate or renegotiate the OSA to enable greater oversight by LIPA and DPS.
The Task Force presented the 90-Day Report to the Board at the November 18, 2020 Board Meeting. The 90-Day Report expanded on the findings of the 30-Day Report and addressed broader questions on the effectiveness of PSEG Long Island’s management of utility operations.

As set forth in Appendix 2 and Appendix 3 of the 90-Day Report, the Task Force provided nearly 100 recommendations for the Board’s consideration (the “Task Force Recommendations”). The Task Force Recommendations were designed to, among other things, (i) change management incentives and accountabilities; (ii) reform information technology and emergency management; and (iii) strengthen LIPA’s oversight. The Task Force Recommendations are tiered based upon priority. The tiered system allows LIPA and PSEG Long Island to either implement or present implementation plans to implement the most critical recommendations on an accelerated basis.

By Resolution No. 1568, dated November 18, 2020, the Board directed the Task Force, together with PSEG Long Island, to implement the Task Force Recommendations, including the creation of Implementation Plans to be completed within the tiered structure as set forth in Appendix 2 and Appendix 3 of the 90-Day Report; and to report to the Board at least quarterly until such Task Force Recommendations are fully implemented.

Thereafter, by Resolution No. 1570, dated December 16, 2020, the Board adopted certain Implementation Plans for the Task Force Tier 1 Recommendations, and directed PSEG Long Island to amend the remaining Tier 1 Implementation Plans and resubmit such plans to the Task Force for review at the Board’s January 2021 meeting.

By Resolution No. 1590, dated January 27, 2021, the Board adopted certain other Tier 1 Recommendation Implementation Plans and directed PSEG Long Island to amend the remaining Tier 1 and 2 Implementation Plans and resubmit such plans to the Task Force for review on or before Board’s February 2021 meeting.

Discussion of Implementation Plans

On December 7, 2020, PSEG Long Island submitted Implementation Plans for the Tier 1 Recommendations to the Task Force for review. The Task Force provided comments on each Implementation Plan on December 9, 2020 and asked for revised Plans to be submitted on December 11.

The Task Force subsequently reviewed the December 11 Plans provided by PSEG Long Island and recommended that eight of the revised Tier 1 Plans be adopted by the Board and 21 be resubmitted for the Board’s review at the January 2021 meeting with Task Force’s comments addressed.

The Task Force asked PSEG Long Island to submit the Tier 2 Plans and resubmit the 21 revised Tier 1 Plans on January 10 and deliverables belonging to the completed projects. PSEG Long Island submitted the majority of the Plans and six deliverables. The Task Force reviewed the January Plans provided by PSEG Long Island and recommended that ten of the revised Tier 1 and Tier 2 Plans be adopted by the Board and 20 be resubmitted for the Board’s review at the February 2021 meeting with Task Force comments addressed.
On February 4 and 5, 2021, PSEG Long Island submitted 20 Tier 3 plans, three Tier 1 and 2 revised plans, and one deliverable to the Task Force for review.

A summary of the Implementation Plans is provided as Exhibit “B”. The Task Force recommends the Board adopt 9 of the 23 Implementation Plans as attached hereto as Exhibit “C” and that the Board recommend PSEG Long Island resubmit the remaining 12 Implementation Plans at the Board’s March meeting with the comments in Exhibit “B” addressed. Evaluation of two plans are being postponed until LIPA review of storm hardening data is completed.

In addition, as of February 19, 2021, PSEG Long Island did not submit 14 revised Tier 1 and Tier 2 Implementation Plans that were previously considered by the Board in the December and January meetings and not adopted. Revised plans were requested for the Board’s consideration for the February meeting. These remaining plans should also be submitted with the comments previously conveyed in December and January addressed.

The remaining 28 Plans for those recommendations designated as Tier 1, 2 and 3 shall be submitted by PSEG Long Island for Task Force review no later than March 10 for consideration at the Board’s March meeting. Thereafter, the Task Force shall submit a Status Report to the Board no less than quarterly that summarizes the Implementation Plans' status for each Task Force Recommendation.

Recommendation

The issues identified by the Task Force’s investigation, as well as the DPS’ separate investigation, remain urgent. Based upon the foregoing, I recommend approval of the above requested action by adoption of a resolution in the form attached hereto.

Attachments

<table>
<thead>
<tr>
<th>Exhibit “A”</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit “B”</td>
<td>Summary of Implementation Plans</td>
</tr>
<tr>
<td>Exhibit “C”</td>
<td>Tier 1, Tier 2 and Tier 3 Implementation Plans</td>
</tr>
</tbody>
</table>
RESOLUTION ADOPTING CERTAIN PSEG LONG ISLAND IMPLEMENTATION PLANS FOR THE ISAIAS TASK FORCE REPORT RECOMMENDATIONS

WHEREAS, on Tuesday, August 4, 2020, Tropical Storm Isaias landed on Long Island with rain and wind gusts of up to 70 miles per hour, resulting in damage to the electrical system and causing approximately 646,000 customer outages; and

WHEREAS, pursuant to Section 1020-f(y) of the Public Authorities Law, General Powers of the Authority, LIPA, in part, may “make any inquiry, investigation, survey or study which the authority may deem necessary to enable it effectively to carry out the provisions of this title. . .”; and

WHEREAS, pursuant to Section 4.4(16), Rights and Responsibilities of LIPA, of the Amended and Restated Operations Services Agreement (“OSA”), LIPA, in part, has the right to “make recommendations to the Service Provider, in each case as may be reasonably necessary or appropriate to perform LIPA’s oversight responsibilities and obligations with respect to the provision of Operations Services under this Agreement and as may otherwise be necessary or appropriate to comply with LIPA’s legal, contractual and fiduciary obligations. . .”; and

WHEREAS, on August 5, LIPA’s Chief Executive Officer initiated an independent review of the circumstances and root causes that led to the lapses in PSEG Long Island’s Tropical Storm Isaias storm restoration; and

WHEREAS, LIPA’s Chief Executive Officer appointed an Isaias Task Force that was charged with both providing actionable recommendations and overseeing PSEG Long Island’s remediation activities; and

WHEREAS, LIPA committed to reporting the Isaias Task Force’s findings, observations, and recommendations to the LIPA Board of Trustees and public in a 30-Day Report, 90-Day Report, and 180-Day Final Report; and

WHEREAS, the Task Force presented the 30-Day Report to LIPA’s Board of Trustees at the September 23, 2020 Board Meeting and released it to the public; and

WHEREAS, on November 18, 2020, the Task Force presented the 90-Day Report, which provided recommendations to, among other things, (i) Change Management Incentives and Accountabilities; (ii) Reform Information Technology and Emergency Management; and (iii) Strengthen LIPA’s Oversight (together with the 30-Day Report recommendations, the “Task Force Recommendations”); and

WHEREAS, by Resolution No. 1568, dated November 18, 2020, the Board directed the Isaias Task Force, in coordination with PSEG Long Island, to submit an Implementation Plan to the Board of Trustees for each Task Force Recommendation; and
WHEREAS, by Resolution No. 1570, dated December 16, 2020, the Board adopted certain Implementation Plans for the Task Force Tier 1 Recommendations, and directed that PSEG Long Island to amend the remaining Tier 1 Implementation Plans and resubmit such plans to the Task Force for review at the Board’s January 2021 meeting; and

WHEREAS, by Resolution No. 1590, dated January 27, 2021, the Board adopted certain other Tier 1 Recommendation Implementation Plans; directed PSEG Long Island to amend the remaining Tier 1 and 2 Implementation Plans and resubmit such plans to the Task Force for review on or before Board’s February 2021 meeting; and extended the time to submit the Task Force 180-Day Final Report to a 270-Day Final Report due to the Board on or before its May 2021 meeting.

WHEREAS, the Isaias Task Force has submitted to the Board nine (9) Implementation Plans recommended for the Board’s approval; and

WHEREAS, the Isaias Task Force Recommendations include that if LIPA and PSEG Long Island renegotiate and cannot reach an agreement on acceptable reforms, or should there be a lack of progress to implement the Isaias Task Force Recommendations, the Board of Trustees consider the exercise of its rights to terminate the OSA with PSEG Long Island before 2025 due to the urgent issues identified by the Task Force’s investigation.

NOW, THEREFORE, BE IT RESOLVED, the Board hereby adopts Implementation Plans for the Task Force Tier 1, 2 and 3 Recommendations attached hereto as Exhibit “C”; and

BE IT FURTHER RESOLVED, the Board hereby directs PSEG Long Island to amend the remaining Tier 1, 2 and 3 Implementation Plans to address the comments provided by the Isaias Task Force and resubmit such plans to the Isaias Task Force for review on or before Board’s March 2021 meeting; and

Dated: February 24, 2021
<table>
<thead>
<tr>
<th>Date Issued</th>
<th>Section</th>
<th>Problem</th>
<th>Recommendation</th>
<th>Plan/Action Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/18/20</td>
<td>5.16</td>
<td>Increase use of drones and other technologies to improve damage assessment.</td>
<td>Review the storm-oriented customer journey maps implemented within the mobile and web apps.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PSEG Long Island

Project Implementation Plan

for

Isaias Task Force
Recommendation Implementations

Recommendation No. 4.15

Project Title: Performance test OMS and “feeder” systems to establish peak capacity
Table of Contents

1. **Project Definition** .. 1
 1.1. Project Purpose, Objectives, and Success Criteria ... 1
2. **Project Deliverables:** ... 1
 2.1. Assumptions, Dependencies, and Constraints .. 1
3. **Project Structure** .. 3
 3.1. Internal Project Organization .. 3
 3.2. Other Stakeholders ... 4
4. **Project Plan** .. 5
 4.1. Project Work Plan ... 5
 4.2. Risk Management Plan .. 6
 4.3. Issue Resolution Plan ... 8
 4.4. LIPA Reporting Plan ... 8
5. **Technical Execution Plan** .. 8
 5.1. Determine the overall peak operational capacity of the OMS and supporting interfaces 8
 5.2. Performance Test Approach ... 11
 5.3. Quality Assurance Plan ... 12
 5.4. Documentation Plan .. 13
6. **Appendix** .. 14
 6.1. Performance Test Model ... 14
 6.2. Recommendation Tier Definition .. 14
1. Project Definition

The OMS project is focused on improving the performance and reliability of the OMS and its ecosystem. The objective of the OMS Performance Testing (recommendation 4.15) is to systematically test the OMS v6.7 re-platform to ensure the application and infrastructure can address peak system demands. This test has been incorporated into the overall testing approach, which is detailed in Appendix 6.1 - Performance Test.

1.1. Project Purpose, Objectives, and Success Criteria

Project Objectives: Determine the peak performance capacity of the OMS and the feeder systems (enhanced external interfaces).

Project End State and Success Criteria: Established peak capacity performance baseline of OMS and its external interfaces.

2. Project Deliverables:

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Delivery Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop OMS v5.5 Feeder Test Plan</td>
<td>3/5/21</td>
<td>Individual Feeder Performance to be built in to OMS v5.5 Testing Strategy following End to End Test</td>
</tr>
<tr>
<td>OMS v5.5 Individual Feeder Performance Baseline Results</td>
<td>4/9/21</td>
<td>See section 4.0 for detailed project plan</td>
</tr>
<tr>
<td>Develop OMS v.6.7 Feeder Test Plan, incorporate findings from 5.5 testing</td>
<td>5/11/21</td>
<td>Utilize findings from v5.5 testing and v.6.7 performance testing</td>
</tr>
<tr>
<td>Milestone - Complete Stress to Failure Testing of Individual Feeder Systems</td>
<td>6/1/21</td>
<td>Milestone only, documentation to follow</td>
</tr>
<tr>
<td>Results documenting the peak capacity of the OMS v6.7 eco-system to address storm conditions.</td>
<td>6/8/2021</td>
<td>See section 4.0 for detailed project plan</td>
</tr>
</tbody>
</table>

*Dates are dependent on the design/build/test schedules for OMS and capabilities delivered in other recommendations.

2.1. Assumptions, Dependencies, and Constraints

2.1.1 Assumptions:
- CGI Vendor resources will be available to provide SME time and answer any questions on their applications
- XTENSIBLE is responsible for developing, testing, and deploying the Sonic ESB middleware between the interfaces and the OMS.
- Customer interface vendors (Intrado, Kubra) have resources and environment available to support testing and required scripting activities
• Project implementation timeline is planned to complete all activities ahead of the storm season
• The OMS v6.7 system hardware re-platforming is complete, and the OMS is operational
• Performance testing of the OMS v5.5 including the 12-hr, 24-hr and stress to failure test have been completed.
• OMS v5.5 performance test results will be provided by a Stress Test to Failure for OMS and its external interfaces
• Upstream individual feeder baselines, from OMS v5.5 Stress Tests to Failure, are valid at the time of 6.7 Stress to Failure Testing
• The OMS performance baseline criteria have been established and documented
• All updates to the Digital channels have been implemented and successfully tested
• All telecommunication updates have been implemented and successfully tested
• This implementation plan is applicable to OMS v5.5 and v6.7
• The dates set forth in project implementation plan (“PIP”) are dependent on the design/build/test schedules for OMS and capabilities delivered in other recommendations.
• Result of the “Stress to Failure” Test on OMS v6.7, defined in this PIP, is not a requirement for 6.7 go-live as it is a Tier 3 Recommendation as defined in Appendix 6.2 Recommendation Tier Definition
• As a Tier 3 Recommendation, Stress to Failure Test on OMS is not on the critical path and is not part of our go/no-go criteria. This activity can be completed post OMS v6.7 go-live.
• The Stress Testing of the following feeder systems will be part of the overall scope – Intrado IVR, MyAccount, SCADA, Text Messages, etc.

2.1.2 Dependencies:
• PSEG LI has the available facilities, including electrical service, capable of hosting new dedicated OMS hardware
• Integrated testing of the OMS system with dependent vendors outlined in the Digital Channels and Telecom implementation plans, to provide outage information into the OMS
• The timeline to complete the recommendations is dependent on procurement of standby hardware and setup of application for OMS v6.7
• The timeline is dependent on alignment of the overall test approach for all workstreams (OMS, Digital Channels, Telecom, Field Mobility) between PSEG LI and LIPA

2.1.3 Constraints:
• The number of qualified resources with subject matter expertise
• Competing projects that further constrain available resources
• Availability of vendor resources to provide application updates and support testing activities
3. Project Structure

3.1. Internal Project Organization

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Responsibilities</th>
</tr>
</thead>
</table>
| Steering Committee | Dan Eichhorn, Zeeshan Sheikh| • Championing the PSEG LI Storm Restoration initiative
| | | • Establishing guiding principles for the project
| | | • Ensuring project activities remained aligned with the guiding principles as defined
| | | • Providing guidance and input on key project decisions
| | | • Challenging the project team where appropriate
| | | • Approving major changes to the project’s scope, objectives, timelines, costs, etc.
| | | • Acting as the decision maker for issues requiring escalation
| | | • Removing institutional barriers if they arise by serving as a project advocate |
| PSEG LI CIO | Zeeshan Sheikh (Interim) | • Ensuring workstreams adhere to guiding principles as defined by project leadership
| | | • Managing issues and decision making
| | | • Removing any obstacles that may impede the success of the overall project
| | | • Providing strategic guidance
| | | • Challenging the project team where appropriate
| | | • Approve procurement of external parties (as needed)
| | | • Confirm all the required transactions, scenarios, and targets (including their acceptable tolerance limits) are identified and planned to be tested for the performance targets
| | | • Review and approve the Testing Approach and Test Plan |
| Advisory Committee Members| Tim Weeks, Damon LoBoi, Mike Szopinski, Fred Daum, Patrick Hession, Larry Torres, Michael Sullivan| • Providing guidance and input on key project decisions
| | | • Assisting in the procurement of external parties (as needed)
| | | • Removing any obstacles that may impede the success of the overall project
| | | • Providing subject matter expertise to the project
| | | • Challenging the project team
| | | • Confirm all the required transactions, scenarios and targets (including their acceptable tolerance limits) are identified and planned to be tested for the performance targets
| | | • Review and approve the Testing Approach and Test Plan |
| Team Lead | Camila Sierra
| | Kirankumar Ramayanam
| | Sachin Satija
| | Geng Wang
| • Drive workstream tasks and deliver recommendations for Solution Design Specification
| • Provide support for Testing
| • Aid in the development of functional requirements
| • Provide input on requirement / design including preliminary documentation such as Requirements Traceability Matrices
| • Coordinating with Business Resources to support the project and testing activities
| • Key Point of contact for questions from the OMS vendor
| • Providing sign off for deliverables that require business input/acceptance
| • Delivering the OMS project on time and on budget
| • Review and approve the Testing Approach and Test Plan
| Project Manager | Nathan White
| • Reporting overall status of the project to Stakeholders and Program Leadership
| • Identifying and escalating any resource issues
| • Providing status reports for delivery to internal and external stakeholders (LIPA, DPS)
| • Manage resources, schedule, issues, risks and change requests
| • Process development, requirements definition,
| • Providing subject matter expertise to the project
| • User Impact Analysis
| • Facilitating workshops
| Performance Engineer | Sri Kanaparthy
| • Supporting Build/Test/Deploy Activities
| • Assist with Environment setup
| • Coordinating Development activities
| • Assist with Technical Design and Architecture
| • Assist with Transfer of Environments
| Business Lead | Anthony Vota
| | Mahamudul Chowdhury
| | Gurkirat Singh
| | Paul Mattera
| | Matthew Otto
| • Process development, requirements definition, functional design
| • Technical Design
| • Supporting vendor questions and workshops
| • Testing Execution and support
| Test Lead | Sandeep Blah
| | Asutosh Agarwal
| | Priyesh Doshi
| • Providing overall management across testing activities
| • Develop Test Strategy
| • Develop Test Data
| Test Coordinator | Sikder Islam
| | Jinesh Kurian
| • Test Coordination between Vendor and PSEG resources
| • Responsible for execution of Test Scripts
| • Test Script Development
| Environment Lead | Anish Thomas
| | Sohan Patel
| | Vikas Vohra
| • Technical Design development
| • Environment design support
| OMS Developers and Subject Matter Advisors (CGI) | Peter Barnes
| | Guillaume Simard-Lebrun
| | Stephane Dumouchel
| | Mark DeAgazio
| | Neel Rana
| | Jeffery Clark
| • Responsible for working with PSEG LI to install and validate the OMS solution
| • Responsible for any defect fixes and troubleshooting functional and performance issues
| PSEG NJ IT Subject Matter Advisor | Damon LoBoi
| | Michal Szopinski
| | Timothy Weeks
| | Michael Casella
| | Ryan Wilson
| | Ajith Elayidom
| • Subject Matter support with:
| • Build/Test/Deploy Activities
| • Assisting with Environment setup
| • Coordinating Development activities
| • Assisting with Technical Design and Architecture
| • Assisting with Transfer of Environments

3.2. Other Stakeholders

Identification of other internal and external project stakeholders is shown below:
4. Project Plan

4.1. Project Work Plan

This project work plan below outlines the steps that will be taken to test the OMS and feeder systems to establish individual capacity baselines in OMS v5.5 and determine a re-baselined capacity following the system upgrade to OMS v6.7. This project workplan aligns with recommendations 3.2.2.3, 4.12 and 4.13.

<table>
<thead>
<tr>
<th>Type</th>
<th>Task Name</th>
<th>Status</th>
<th>% Complete</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
<td>Performance test OMS and “feeder” systems to establish peak capacity</td>
<td>In Progress</td>
<td>16%</td>
<td>Mon 2/1/21</td>
<td>Tue 6/8/21</td>
</tr>
<tr>
<td>Parent</td>
<td>OMS 5.5 Stress to Failure Testing</td>
<td>In Progress</td>
<td>8%</td>
<td>Mon 2/1/21</td>
<td>Wed 4/14/21</td>
</tr>
<tr>
<td>Task</td>
<td>Prepare for Testing</td>
<td>In Progress</td>
<td>50%</td>
<td>Mon 2/1/21</td>
<td>Wed 2/10/21</td>
</tr>
<tr>
<td>Task</td>
<td>Execute End to End Performance Testing</td>
<td>Not Started</td>
<td>0%</td>
<td>Thu 2/11/21</td>
<td>Wed 2/24/21</td>
</tr>
<tr>
<td>Task</td>
<td>Document Findings, Lessons Learned</td>
<td>Not Started</td>
<td>0%</td>
<td>Thu 2/25/21</td>
<td>Wed 3/10/21</td>
</tr>
<tr>
<td>Deliverable</td>
<td>Develop OMS v5.5 Feeder Test Plan</td>
<td>Not Started</td>
<td>0%</td>
<td>Wed 3/10/21</td>
<td>Wed 3/10/21</td>
</tr>
<tr>
<td>Task</td>
<td>Stress to Failure Testing of Individual Feeder Systems for OMS 5.5</td>
<td>Not Started</td>
<td>0%</td>
<td>Mon 3/11/21</td>
<td>Wed 4/7/21</td>
</tr>
<tr>
<td>Task</td>
<td>Document Baseline for Individual Feeders</td>
<td>Not Started</td>
<td>0%</td>
<td>Thu 4/8/21</td>
<td>Wed 4/14/21</td>
</tr>
<tr>
<td>Deliverable</td>
<td>OMS v5.5 Individual Feeder Performance Baseline Results</td>
<td>Not Started</td>
<td>0%</td>
<td>Wed 4/14/21</td>
<td>Wed 4/14/21</td>
</tr>
<tr>
<td>Parent</td>
<td>6.7 Stress to Failure Testing</td>
<td>Not Started</td>
<td>0%</td>
<td>Wed 4/28/21</td>
<td>Tue 6/8/21</td>
</tr>
<tr>
<td>Task</td>
<td>Prep for Testing, incorporate findings from 5.5 testing</td>
<td>Not Started</td>
<td>0%</td>
<td>Wed 4/28/21</td>
<td>Tue 5/11/21</td>
</tr>
</tbody>
</table>
4.2. Risk Management Plan

Issues and risks will be identified by the PSEG LI Team and the Project Manager ("PM") daily. These items will be logged in an issue/risk tracker. The information in the tracker will be reviewed by the steering committee each week. The steering committee will determine the appropriate actions (if necessary) to keep the project on track. The issue/risk tracker will be used to track items to closure, identifying the resolution date and course of action taken.

The table below outlines the applicable risks and associated risk mitigations for the Outage Management System project.

<table>
<thead>
<tr>
<th>Category</th>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td>Resource constraints from OMS team due to competing projects.</td>
<td>Assign and commit sufficient business and IT resources with availability to support this project. Two new external contracted resources with OMS experience, specifically with CGI’s OMS system, have been hired to provide operations support allowing existing team members to focus on the project. As necessary, additional contract resources will be hired to back fill normal job responsibilities</td>
</tr>
<tr>
<td>Resources</td>
<td>Availability of resources due to other Storm duty priorities</td>
<td>Careful prioritization of projects with LIPA recommendations as top priority in order to complete all tasks/milestones on time.</td>
</tr>
<tr>
<td>Schedule / Cost</td>
<td>Contract negotiation could delay project due to multiple vendor partners involved for making changes to the entire architecture</td>
<td>PSEG LI to expedite contract approvals and determine if there are options for performing some work internally</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Schedule / Cost</td>
<td>Vendor delays cause the schedule to shift and key project milestones are not able to be met on time</td>
<td>Regular cadence with vendors (weekly) to establish priorities and address any issues. Work with the vendor to quickly resolve any impediments.</td>
</tr>
<tr>
<td>Schedule / Cost</td>
<td>The activities outlined in the OMS project become more complex than anticipated</td>
<td>Review the additional work required to complete the project with the steering committee. Add the scope required to complete the project to the implementation plan. Clearly identify the steps that will be taken to anticipate this complexity in future projects.</td>
</tr>
<tr>
<td>Schedule / Cost</td>
<td>All project activities are dependent on the successful receipt and installation of new hardware and application installation of OMS v6.7. If the hardware is delayed all project activities for this project may be impacted.</td>
<td>Closely monitor delivery of hardware and perform as many tasks as possible in parallel to mitigate any potential delays.</td>
</tr>
<tr>
<td>Program Management</td>
<td>Lack of Scope/Requirements control including changes needed to legacy IT systems</td>
<td>The project scope has been defined; clear change control processes will be established by the PM to address requests for change.</td>
</tr>
<tr>
<td>Schedule / Cost</td>
<td>Existing PSEG LI Data Centers require site upgrades to accommodate new hardware. Based on the site survey recommendations additional procurement may be required which would impact the project schedule.</td>
<td>Closely monitor the site survey activities and conduct any tasks in parallel to mitigate potential delays.</td>
</tr>
<tr>
<td>Environment</td>
<td>Intrado Test Environment Limitation – PSEG LI Team will need to leverage Intrado Production environment to route incoming test calls over to Test Environment to perform any integrated testing.</td>
<td>Ability to test will be determined based on the prod environment availability (no storm situation). This limits the ability to perform any integrated tests with Intrado to be performed from 12-6 AM.</td>
</tr>
<tr>
<td>Environment</td>
<td>Mainframe Test Environment’s ability to handle testing volume</td>
<td>Monitor impact of mainframe response during the test, adjust exit criteria if slowed response can be attributed to mainframe.</td>
</tr>
</tbody>
</table>
4.3. Issue Resolution Plan

Issues and risks will be identified by the PSEG LI Team and the PM daily. These items will be logged in an issue/risk tracker. The information in the tracker will be reviewed by the steering committee each week. The steering committee will determine the appropriate actions (if necessary) to keep the project on track. The issue/risk tracker will be used to track items to closure, identifying the resolution date and course of action taken.

4.4. LIPA Reporting Plan

Weekly status reports for all recommendations, containing project progress and documentation will be provided to LIPA by Zeeshan Sheikh, PSEG LI CIO (Interim).

Will review test plan with LIPA prior to execution.

5. Technical Execution Plan

5.1. Determine the overall peak operational capacity of the OMS and supporting interfaces

The goal of this test is to determine the peak volume of outage transactions, across all customer interfaces at which the OMS eco-system system is operationally useable.

The following Performance Tests – Model Storm Isaias, Model 90% Customer Out, Stress to Failure and End to End Integrated tests will be conducted as a baseline on OMS 5.5 and again against OMS 6.7. The scope of the current PIP is limited to the Stress to Failure test. The Stress to Failure tests executed against each individual channel against OMS 5.5 test will serve as a foundational baseline result for each of the individual feeder systems Stress Test to Failure. The Stress Test to Failure for OMS and its Feeder systems will be conducted by running a test across the ESB and OMS system with the peak capacity of each individual channel to understand the Stress to Failure point of the OMS system.

Figure 1 below illustrates how Performance Test – Stress to Failure test will be conducted against OMS.
Passing Performance Tests for Model Storm Isaias, Model 90% Customer Out on OMS 6.7 as defined in “Performance Test Strategy” will be required for 6.7 go-live.

Result of the “Stress to Failure” Test on OMS 6.7 defined in this PIP is not requirement for 6.7 go-live.

Figure 2 below illustrates how “Stress to Failure” Test on OMS 6.7, as defined in this PIP, is conducted.

Processing the outages through the interfaces will provide a more accurate representation of the actual end-to-end performance and operation of the OMS eco-system as compared to the current methodology of injecting outage transaction through the ESB.

Scripts simulating customer and SCADA transactions will be applied directly into the interfaces to simulate customer calls and SCADA events into the OMS, at the hourly rates shown in table 5. Tables 3 and 4 show specifically how the hourly ramped profiles will be applied during the test.

Performance metrics will be collected to measure the capability of each interface to sustain outage data transfer through the interface into the ESB and finally into the OMS incident
manager. Operational testing of the OMS will be conducted at each step in the escalation, to establish performance metrics. Data will be collected and documented to validate the capability of the interface and the OMS.

The testing approach described in this section is based on lessons learned during testing of both the v5.5 and v6.7 OMS.

![OMS 6.7 Stress to Failure Test by End-to-End Data Injection](image)

Figure 2. 6.7 Stress to Failure Test by Injecting Data at the Front of Digital Channels

Test A = Validate Intrado Digital Channel, Test B = Validate MyAccount Channel, Test C = Validate SCADA Alarms through PI, Test D = Validate Text Messages Digital

| Table 3: SCADA Alarms by Test Hour | Table 4: Multi-Channel Transactions by Test Hour |
Performance Requirements

- Establish peak performance baseline of the OMS, and external interfaces

5.2. Performance Test Approach

Environment Setup

- Develop infrastructure and application baseline
 - Infrastructure Setup – Hardware components (OS, Memory, CPU, Storage)
 - Application configuration to match or replicate the production environment
- Testing tools, Test Scripts
 - Script Web Service Calls
 - Script “Create trouble ticket”, “Get Outage Status”
 - Script Operators, Dispatcher and Crew functions (applicable for OMS v6.7 only)
- Data Preparation – Data input scripts to simulate customer outage reporting
- Simulating incoming transaction volumes from following upstream systems
 - SCADA Alarms
 - Call Center Reps (CSRs PWEB)
 - IVR Nuance, IVR TFCC
 - Text
 - Web (My Account)

Table 5: 12-Hour Model to Identify peak capability of the OMS

<table>
<thead>
<tr>
<th>Hour</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA Alarms</td>
<td>154</td>
<td>983</td>
<td>1,044</td>
<td>265</td>
<td>154</td>
<td>1,475</td>
<td>1,566</td>
<td>398</td>
<td>154</td>
<td>1,966</td>
<td>2,088</td>
<td>530</td>
<td>10,776</td>
</tr>
<tr>
<td>CSR</td>
<td>7,619</td>
<td>14,673</td>
<td>12,527</td>
<td>2,385</td>
<td>7,619</td>
<td>20,010</td>
<td>18,790</td>
<td>3,578</td>
<td>7,619</td>
<td>29,347</td>
<td>25,054</td>
<td>4,771</td>
<td>155,993</td>
</tr>
<tr>
<td>IVR</td>
<td>3,063</td>
<td>5,898</td>
<td>5,035</td>
<td>959</td>
<td>3,063</td>
<td>8,847</td>
<td>7,553</td>
<td>1,438</td>
<td>3,063</td>
<td>11,796</td>
<td>10,071</td>
<td>1,918</td>
<td>62,703</td>
</tr>
<tr>
<td>TFCC</td>
<td>51,117</td>
<td>98,441</td>
<td>84,041</td>
<td>16,003</td>
<td>51,117</td>
<td>147,662</td>
<td>126,061</td>
<td>24,004</td>
<td>51,117</td>
<td>196,882</td>
<td>168,081</td>
<td>32,006</td>
<td>1,046,532</td>
</tr>
<tr>
<td>Web</td>
<td>11,024</td>
<td>21,230</td>
<td>18,125</td>
<td>3,451</td>
<td>11,024</td>
<td>31,846</td>
<td>27,187</td>
<td>5,177</td>
<td>11,024</td>
<td>42,461</td>
<td>36,249</td>
<td>6,903</td>
<td>225,702</td>
</tr>
<tr>
<td>Mobile App</td>
<td>6,344</td>
<td>12,217</td>
<td>10,430</td>
<td>1,986</td>
<td>6,344</td>
<td>18,326</td>
<td>15,645</td>
<td>2,979</td>
<td>6,344</td>
<td>24,435</td>
<td>20,860</td>
<td>3,972</td>
<td>129,884</td>
</tr>
</tbody>
</table>
5.3. **Quality Assurance Plan**

The team will adhere to the PSEG’s IT standards for the deployment of this project. PSEG LI IT SharePoint will be used as the document repository.

An individual test plan will be created, and for this recommendation it will include the following: Scope of testing, Test Criteria, Tests to be performed (e.g.: Functional, Acceptance, Regression, Performance Testing, End to End Performance Test).

Test plan and test results will be shared with LIPA upon completion.

The following functionalities of the v6.7 OMS system will be performance and stress tested to ensure stability during future storm events:

- PragmaCAD
- PragmaGEO
- PCall / PWeb
- OMS Incident Manager
- OMS Group Manager and Groupings
- OMS Web Services / ESB Web Services
- Outage Map Update
- Digital Channels

<table>
<thead>
<tr>
<th>Tier</th>
<th>Metrics</th>
<th>Value Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>OMS Web Service</td>
<td>Measurement of requests processed versus timed-out / failed</td>
</tr>
<tr>
<td>Application</td>
<td>OMS Group Manager Service</td>
<td>Measurement of group manager service to process incoming calls into new or existing outages. Some of these would go into CMS Manager for calls into existing known outages and some would be OMS GRP MGR if it is new call / incident</td>
</tr>
<tr>
<td>Integration</td>
<td>ESB Web Services - Queue Depth</td>
<td>Measurement of queue depths during the test execution</td>
</tr>
</tbody>
</table>
| Customer Experience | Outage Map | Measurement of Outage Map update between OMS > ESB > Kubra
2. Frequency of updates
3. Accuracy of updates (Active outages and Customers Affected) |
<table>
<thead>
<tr>
<th>Tier</th>
<th>Metrics</th>
<th>Value Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>OMS Incident Manager</td>
<td>Usability of Incident Manager and perform business functions</td>
</tr>
<tr>
<td></td>
<td>functionality</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>CAD functionality</td>
<td>Usability of CAD and perform business functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>PGEO functionality</td>
<td>Information updates & usability of PGEO and perform business functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>PCall/Pweb</td>
<td>Accessibility of the functionality and ability to submit outages into the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Digital Channels</td>
<td>Volume of requests processed versus timed-out / failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Telecom</td>
<td>Call volume via the telecommunications infrastructure.</td>
</tr>
</tbody>
</table>

The basis for all performance and stress testing will be based on the data model below:

5.4. Documentation Plan

Throughout the project lifecycle the implementation team will document and deliver the key deliverables as listed above in Section 2. The due date of each deliverable will be based off the Project Schedule as outlined in Section 4.1. A final Project Closure Document will be delivered once all LIPA Recommendations in this implementation plan are completed.

<table>
<thead>
<tr>
<th>Project Artifacts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Strategy & Plan</td>
<td>Test cases & test data are meeting the design requirements</td>
</tr>
<tr>
<td>Test Execution Results</td>
<td>Test results indicate the design requirements accomplished.</td>
</tr>
<tr>
<td>Technical Architecture</td>
<td>Technical Architecture Diagram with updated hardware and infrastructure specifications</td>
</tr>
</tbody>
</table>
6. Appendix

6.1. Performance Test Model

For any references to the “Performance Test Model” please refer the test methodology detailed in the document attached here. This document is not finalized and will be updated as the project progresses.

6.2. Recommendation Tier Definition

From the LIPA Isaias 90-day Report page 16:
“A consolidated lists of recommendations from the 90-Day Report and the 30-Day Report are provided in Appendix 2 and Appendix 3, respectively. We have categorized each recommendation by “tier,” with tier 1 being the highest priority.”
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathan White / Phillip Vallejo</td>
<td>1/26/2021</td>
<td>Initial Draft</td>
<td>1.0 draft 1</td>
</tr>
<tr>
<td>Kirankumar Ramayanam</td>
<td>1/27/2021</td>
<td>Review comments</td>
<td>1.0 draft 2</td>
</tr>
<tr>
<td>Nathan White / Phillip Vallejo / Geng Wang</td>
<td>1/28/2021</td>
<td>Update test</td>
<td>1.0 Draft 3</td>
</tr>
<tr>
<td>Geng Wang / Priyesh Doshi</td>
<td>2/1/2021</td>
<td>Updated test strategy</td>
<td>1.0 Draft 4</td>
</tr>
<tr>
<td>Kirankumar Ramayanam</td>
<td>2/2/2021</td>
<td>Reviewed and commented</td>
<td>1.0 Draft 5</td>
</tr>
<tr>
<td>Nathan White / Priyesh Doshi</td>
<td>2/2/2021</td>
<td>Updated terminology and assumptions</td>
<td>1.0 Draft 6</td>
</tr>
<tr>
<td>Nathan White / Priyesh Doshi</td>
<td>2/5/2021</td>
<td>Legal updates</td>
<td>1.0 Draft 7</td>
</tr>
</tbody>
</table>
Project Implementation Plan
for
Isaias Task Force Recommendation Implementations

Recommendation No. 5.04

Project Title: Continuation of Mission Critical Systems and Processes

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.04</td>
<td>90 Day Report</td>
<td>Create BCPs for all mission critical systems and processes.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Project Definition ... 1
 1.1. Project Purpose, Objectives, and Success Criteria .. 1

2. Project Deliverables: .. 1
 2.1. Assumptions, Dependencies, and Constraints .. 2

3. Project Structure ... 2
 3.1. Internal Project Organization .. 2
 3.2. Other Stakeholders ... 2

4. Project Plan ... 3
 4.1. Project Work Plan ... 3
 4.2. Risk Management Plan ... 3
 4.3. Issue Resolution Plan .. 3
 4.4. LIPA Reporting Plan ... 3

5. Technical Execution Plan ... 4
 5.1. Technical Approach ... 4
 5.2. Quality Assurance Plan .. 4
 5.3. Documentation Plan ... 4
1. **Project Definition**

This project seeks to review established Business Continuity Plans to determine which critical applications require revised/updated or new workarounds if those applications are unavailable (the application does not have a Disaster Recovery capability and/or is not performing as required). The project will also ensure that every Business Continuity Plan (BCP) contains appropriate guidance on who and under what circumstances that person in PSEG Long Island will have the authority to activate the BCP.

1.1. **Project Purpose, Objectives, and Success Criteria**

Project Objectives:

This project’s objective is to create effective workarounds for mission critical systems and processes when applications required to perform the work are unavailable.

Project End State and Success Criteria:

The end state of this project occurs when workarounds have been updated/revised or created for all mission critical systems and processes and the activation protocols have been set.

2. **Project Deliverables:**

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Delivery Date</th>
<th>Owner</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop storm response critical application workarounds</td>
<td>1/29/21</td>
<td>Larry Torres</td>
<td>Complete</td>
</tr>
<tr>
<td>Finalize list of mission critical processes and supporting end-user applications for submission to LIPA</td>
<td>2/19/21</td>
<td>Frank Savin</td>
<td>Pending</td>
</tr>
<tr>
<td>Based on list of supporting end-user applications, identify all related sub-systems for submission to LIPA</td>
<td>3/12/21</td>
<td>Irving Landesbaum</td>
<td>Pending</td>
</tr>
<tr>
<td>Develop Draft workarounds for Tier 1 Business Unit mission critical applications and processes</td>
<td>4/2/21</td>
<td>Frank Savin</td>
<td>Pending</td>
</tr>
<tr>
<td>Review Tier 1 Business Unit Draft workarounds with LIPA</td>
<td>4/16/21</td>
<td>Frank Savin</td>
<td>Pending</td>
</tr>
<tr>
<td>Develop Draft workarounds for Tier 2 Business Unit mission critical applications and processes</td>
<td>4/23/21</td>
<td>Frank Savin</td>
<td>Pending</td>
</tr>
</tbody>
</table>
2.1. Assumptions, Dependencies, and Constraints

Assumptions: An agreement can be reached on which applications and business processes are mission critical.

Dependencies: Leverage the existing information used in the Business Continuity Plans.

Constraints:
- Competing projects at PSEG LI could affect timelines
- Storm season will be a priority for PSEG LI resources who will be unavailable when performing storm roles or resolving current production issues

3. Project Structure

3.1. Internal Project Organization

The Project Sponsors are John OConnell and Aaron Ford.

Work will be performed within the current business continuity organization using each Business Unit’s Business Continuity Coordinators who will review the Business Impact Analysis and BC Plan with their SLT, develop a list of mission critical applications and processes and obtain BC Plan Owner approval.

In addition, the IT Department will review each mission critical application to identify repair and recovery plans when mission critical applications do not perform as required.

3.2. Other Stakeholders

LIPA
4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Delivery Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Project Deliverables above</td>
<td>See above</td>
<td>See above</td>
</tr>
</tbody>
</table>

4.2. Risk Management Plan

The table below outlines the applicable risks and associated risk mitigations for this project.

<table>
<thead>
<tr>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workarounds fail to meet stakeholder expectations</td>
<td>• Leverage all available resources (alternate and more flexible/resilient technologies, industry best practices, outside SMEs) to constantly improve workarounds</td>
</tr>
<tr>
<td>Ability to develop effective workarounds for complex applications</td>
<td>• Increase resiliency of IT infrastructure</td>
</tr>
<tr>
<td></td>
<td>• Enhance DR capabilities and /or restoration times</td>
</tr>
<tr>
<td>Resource constraints from team due to competing projects</td>
<td>• Assign and commit business and IT resources and verify they are available to support this project. As necessary, hire contract resources to back fill normal job responsibilities</td>
</tr>
<tr>
<td>Availability of resources due to other Storm duty priorities</td>
<td>• Careful prioritization of projects with LIPA recommendations as top priority in order to complete all tasks/milestones on time</td>
</tr>
</tbody>
</table>

4.3. Issue Resolution Plan

Continuous communication with the Project Team Leader, the BCCs and LIPA will identify issues in a timely manner. All issues noted will be added to the Risk Mitigation Plan above and tracked to closure.

4.4. LIPA Reporting Plan

Project team will seek input form LIPA on their needs.
5. Technical Execution Plan

5.1. Technical Approach

Leverage all applicable information in BIAs and BC Plans to assist in identifying mission critical applications and processes. Identify or develop alternative and/or back-up technologies whenever and wherever possible to reduce the dependency on manual and/or less efficient workaround processes. Seek opportunities to utilize historical data to offset the temporary loss of critical applications. In addition:

- Identify and on-board resource to be the focal point for IT Disaster Recovery work stream
- Support conducting BIA reviews and determine which underlying systems/processes are tied to mission critical applications/processes for PSEG LI
- Create repair and recovery analysis framework utilizing OMS as a base case:
 - Perform Dependency Assessment (Network, Infrastructure, Middleware) of a defined subset of applications used for E2E process of Outage Management (Outage to Restoration)
 - Develop Disaster Recovery Plan (DR Plan) to support BC workarounds
- Roadmap and recommendations for remaining systems/processes identified as mission critical in BIA (prioritized to risk)

5.2. Quality Assurance Plan

Conduct a comprehensive review of all updated or new workarounds with stakeholders to confirm each process meets the needs of all end-users. Leverage industry best practices and lessons learned from actual events to improve workarounds. Use exercises to confirm the effectiveness of each workaround, identify opportunities for training, and incorporate lessons learned.

5.3. Documentation Plan

Throughout the project lifecycle the implementation team will document and deliver the key deliverables as listed above in Section 2. A final Project Closure Document will be delivered once all LIPA Recommendations in this implementation plan are completed.
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank Zavin</td>
<td>02/03/21</td>
<td>initial draft – w/ team feedback</td>
<td>1.0 draft 1</td>
</tr>
</tbody>
</table>
PSEG Long Island
Project Implementation Plan
For
Isaias Task Force Recommendation
Implementations

Project Title: Incident Command Structure (ICS) Plan

The following Isaias Task Force recommendation is directly addressed as part of this plan:

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.06</td>
<td>90 Day Report</td>
<td>Modify the Incident Command Structure to provide better visibility to the performance of mission critical technology.</td>
</tr>
</tbody>
</table>
Table of Contents

1. **Project Definition** .. 2
 1.1. Project Purpose, Objectives, and Success Criteria 2
2. **Project Deliverables** ... 3
 2.1. Assumptions, Dependencies, and Constraints 3
3. **Project Structure** ... 4
 3.1. Internal Project Organization .. 4
 3.2. Other Stakeholders ... 4
4. **Project Plan** ... 4
 4.1. Project Work Plan ... 4
 4.2. Risk Mitigation Plan .. 4
1. Project Definition

This project will enhance the Incident Command Structure to provide better visibility to the performance of mission critical technology. Modifications will include documented additional detail on reporting relationships, roles, activities taken, methods of sharing information and forums for critical decision making.

1.1. Project Purpose, Objectives, and Success Criteria

1.1.1 Project Objectives:

The Task Force found the general structure of PSEG Long Island’s ICS is consistent with the National Incident Management System (NIMS), however, failures of technology were exacerbated by lack of visibility and some adjustments to the ICS may have mitigated the situation. The goal of this plan is to improve visibility within ICS to issues relating to mission critical technology, such that these issues can be more effectively managed during an incident.

1.1.2 Project Scope:

The existing ICS will be reviewed; enhancements in areas including reporting relationships, roles, activities taken, methods of sharing information and forums for critical decision-making will be documented. The enhancements will be written into the appropriate plans and appropriate individuals will be trained on these enhancements.

1.1.3 Project End State and Success Criteria:

End state – ICS structure and process enhancements, associated with mission critical technology systems, are documented in the appreciate manuals and appropriate individuals have been trained

Success Criteria

- Clear documentation on topics such as:
 - Reporting relationships
 - Roles
 - Activities taken
 - Methods of sharing information
 - Forums for critical decision making
- Applicable employees understand the enhancements
- Effective interactions related to mission critical systems during events
2. **Project Deliverables**

- Enhancements in areas including
 - Reporting relationships
 - Roles
 - Activities taken
 - Methods of sharing information
 - Forums for critical decision-making
- Detailed documentation of enhancements
- Training of involved employees

2.1. **Assumptions, Dependencies, and Constraints**

Assumptions:

We assume that we can make meaningful enhancements to the existing documentation.

Dependencies:

The plan is dependent on interaction and feedback with/from stakeholders.

Constraints:

No major constraints exist

3. **Project Structure**

3.1. **Internal Project Organization**

John O'Connell will be the Executive Sponsor for this Project. John O'Connell will provide key executive level support. Larry Torres is the project lead; he will provide subject-matter expertise and tactical guidance.
Role Responsibilities

| Role | Responsibilities |
|----------------------|--Adam |
| **Project Sponsor** | • Manage issues and decision making
 | • Remove obstacles that impede the success of the overall project
 | • Provide strategic guidance
 | • Approve procurement of external parties (as needed)
 | • Establish guiding principles for the project
 | • Provide guidance and input on key project decisions
 | • Monitor completion of activities
 | • Challenge the project team where appropriate
 | • Approve major changes to the project’s scope, objectives, timelines, costs, etc.
 | • Act as the decision maker for issues requiring escalation
 | • Remove institutional barriers if and when they arise by serving as a project advocate |
| John O’Connell | |
| **Project lead** | • Subject matter expertise
 | • Tactical guidance and project leadership |
| Larry Torres | |

3.2. Other Stakeholders

The other key stakeholders involved in the execution of this plan are:
- PSEG LI Leadership
- LIPA
- PSEG LI Information Technology Group
- PSEG LI emergency preparedness group

4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>Task</th>
<th>Owner</th>
<th>Current Status</th>
<th>Target End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop enhancements relating to ICS and mission</td>
<td>Brendan Beebe</td>
<td>Pending</td>
<td>March 1, 2021</td>
</tr>
<tr>
<td>critical systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review Recommended Enhancements with PSEG LI SLT</td>
<td>Brendan Beebe</td>
<td>Pending</td>
<td>March 5, 2021</td>
</tr>
<tr>
<td>Incorporate Feedback from SLT into Plan</td>
<td>Brendan Beebe</td>
<td>Pending</td>
<td>March 12, 2021</td>
</tr>
<tr>
<td>Train involved employees regarding enhancements</td>
<td>Brendan Beebe</td>
<td>Pending</td>
<td>April 1, 2021</td>
</tr>
</tbody>
</table>

4.2. Risk Mitigation Plan
There are no significant risks associated with the project plan.

Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Abayarathna</td>
<td>12/15/2020</td>
<td>Updated to focus exclusively on ICS plan</td>
<td>2.0 draft 1</td>
</tr>
<tr>
<td>M. Davis</td>
<td>12/16/2020</td>
<td>Minor updates throughout</td>
<td>2.0 draft 2</td>
</tr>
<tr>
<td>L. Torres</td>
<td>2/2/21</td>
<td>Updated to reflect ne ICS structure alignment</td>
<td>2.0 Draft 3</td>
</tr>
</tbody>
</table>
PSEG Long Island

Project Implementation Plan

for

Isaias Task Force Recommendation Implementations

Project Title: Establish Consistent Work Practices with Off-Island Tree Contractors

Recommendation No.

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.09</td>
<td>90 Day Report</td>
<td>Work with off-island sustaining tree contractors to develop consistent work practices, especially for removal of trees from energized lines.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Project Definition .. 1
 1.1. Project Purpose, Objectives, and Success Criteria .. 1
2. Project Deliverables: .. 1
 2.1. Assumptions, Dependencies, and Constraints ... 1
3. Project Structure .. 2
 3.1. Internal Project Organization .. 2
 3.2. Other Stakeholders ... 2
4. Project Plan .. 2
 4.1. Project Work Plan ... 2
 4.2. Risk Management Plan ... 3
 4.3. Issue Resolution Plan .. 3
 4.4. LIPA Reporting Plan .. 3
5. Technical Execution Plan ... 3
 5.1. Technical Approach .. 3
 5.2. Quality Assurance Plan ... 3
 5.3. Documentation Plan .. 3
1. Project Definition

In preparation of major storm events, off-island tree contractors will be requested to assist in storm restoration. Occasionally, an off-island tree contracting crew will refuse to work near energized lines since it is against their company work practices. This creates a conflict with PSEG Long Island’s work practice, which allows for tree contractors near energized lines as long as minimum approach distances are maintained. Such inconsistency between work practices can cause delays in restoration due to confusion on certain tree crews work capabilities. This project will look to establish ways to mitigate the impact of differing work practices.

1.1 Project Purpose, Objectives, and Success Criteria

Project Objectives:

Develop changes to mitigate impact of differing work practices among responding tree crews

Project End State and Success Criteria:

End state – clearer visibility to work practices of incoming crews and fewer cases where work rules affect restoration productivity

Success Criteria – pre arrival visibility to work rules, reduced cases where work rules impact productivity

2. Project Deliverables:

- Project will deliver a process, whereby, capabilities and work practices of incoming tree crews are understood
- Project will deliver guidance processes for how to mitigate impact of differing work practices
- Training program

2.1. Assumptions, Dependencies, and Constraints

Assumptions:

Project assumes that we have limited capacity to actually change the work practices of crews coming to assist with storm restoration
Project assumes that increased pre arrival visibility to work practices will enable process adjustments that can mitigate the impact of the differing work practices.

Dependencies and Constraints:

This initiative is highly dependent on PSEG Long Island’s needs during storm preparation and storm restoration to obtain as many personnel as needed to attain restoration objectives.

3. Project Structure

3.1. Internal Project Organization

Executive Sponsor – John O’Connell

Project Lead – Mark Cerqueira

3.2. Other Stakeholders

Veg Management contractors

Foreign Crew Management

LIPA

4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Delivery Date</th>
<th>Owner</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop an Inventory Process whereby work practices of all are understood prior to their arrival</td>
<td>March 1, 2021</td>
<td>M. Cerqueira</td>
<td>Inventory questions, when inventories will be conducted, and where results will be stored</td>
</tr>
<tr>
<td>Develop Implementation Guidelines on how work practice information from contractors will be evaluated and how differences will be mitigated</td>
<td>April 1, 2021</td>
<td>M. Cerqueira</td>
<td>Adjustment of work assignments to align with capabilities prior to job assignments</td>
</tr>
<tr>
<td>Train appropriate employees on the Inventory Process and the Implementation Guidelines</td>
<td>May 1, 2021</td>
<td>M. Cerqueira</td>
<td>N/A</td>
</tr>
</tbody>
</table>
4.2. Risk Management Plan

<table>
<thead>
<tr>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of work practice information not being readily available or clear enough for VM staff to make value added adjustments</td>
<td>Clear WP identification forms, clear process on how to mitigate WP differences, good training of VM staff on the process</td>
</tr>
</tbody>
</table>

4.3. Issue Resolution Plan

Project lead will keep track of action items.

4.4. LIPA Reporting Plan

Progress will be reported to Jason Goldsmith, overall project manager.

5. Technical Execution Plan

5.1. Technical Approach

There are no technical approaches required beyond the steps outlined in the above project plan.

5.2. Quality Assurance Plan

LIPA and PSEG LI Leadership will be apprised of status to assure quality.

5.3. Documentation Plan

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Created By</th>
<th>Created by Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory Process Document</td>
<td>Mark Cerqueira</td>
<td>March 1, 2021</td>
</tr>
<tr>
<td>Implementation Guideline Document</td>
<td>Mark Cerqueira</td>
<td>April 1, 2021</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Cerqueira</td>
<td>5/15/21</td>
<td>Initial Draft</td>
<td>1.0 draft 1</td>
</tr>
</tbody>
</table>
Recommendation No. 5.11

Create criteria to guide implementing circuit sweeps during long outages whenever customers have been out for more than 3-4 days and enough line resources are available.
Table of Contents

1. **Project Definition** .. 1
 1.1. Project Purpose, Objectives, and Success Criteria ... 1

2. **Project Deliverables:** .. 1
 2.1. Assumptions, Dependencies, and Constraints ... 1

3. **Project Structure** .. 2
 3.1. Internal Project Organization ... 2
 3.2. Other Stakeholders .. 3

4. **Project Plan** .. 4
 4.1. Project Work Plan .. 4
 4.2. Risk Management Plan .. 4
 4.3. Issue Resolution Plan ... 5
 4.4. LIPA Reporting Plan .. 5

5. **Technical Execution Plan** ... 5
 5.1. Technical Approach .. 5
 5.2. Quality Assurance Plan ... 5
 5.3. Documentation Plan .. 5
1. Project Definition

The goal of this project is to clearly define criteria from which would trigger a decision point to place an area in a circuit sweep restoration mode. The current ERP outlines the guidance for when and how to place a feeder or area in RDA (Remote Dispatch Authority) or RCA (Remote Configuration Authority); however, it currently lacks specificity of criterion to help the Distribution Survey and Operations Control Division Supervisor make this decision.

The circuit sweep restoration philosophy is exceedingly important when an area experiences extensive damage where it is impractical or inefficient to attempt to manage at a job level. It is a much more productive and efficient way to restore those areas in a circuit sweep restoration plan; where survey and restoration crews work together working their way down a circuit restoring any and all customers impacted.

The project will outline how circuit sweeps will be defined, the criteria for activation, how they will be implemented and executed while providing circuit level status updates and ETRs.

1.1. Project Purpose, Objectives, and Success Criteria

Project Objectives:

The project will develop criteria from which the Distribution Survey and Operations Control Division Supervisors will use to support decisions to place a circuit in ADA, RDA and RCA with or without a circuit sweep restoration plan. The project will define how circuit sweeps will be defined, the criteria for activation, how they will be implemented and executed while providing circuit level status updates and ETRs.

Project End State and Success Criteria:

Comprehensive criteria and a guide for implementation and execution for circuit sweep restoration plan added into the ERP, tested and trained.

2. Project Deliverables:

Describe applicable Project Deliverables:

- Clear definition of circuit sweep concepts
- Criteria to trigger circuit sweep activation
- Documented techniques and procedures to support circuit sweep implementation
- Documented procedures to ensure reimbursement while in circuit sweep operation
- ERP update
- Training plan/schedule

2.1. Assumptions, Dependencies, and Constraints

2.1.1 Assumptions:

- Storm event is one that has extensive local damage if restored under job level dispatch would be less efficient.
2.1.2 Dependencies:
- Adequate staffing dedicated to circuit sweeps model.
 - Available tag holders, tree trimmers, damage assessors, line crews and leads
 - Clearance and control maintains within the main dispatch centers
 - Restoration is not dependent on OMS but the decision point will be dependent on the data source(s).
- OMS platform

2.1.3 Constraints:
- Availability of resources
- System functionality

3. Project Structure

3.1. Internal Project Organization

<table>
<thead>
<tr>
<th>Role</th>
<th>Members</th>
</tr>
</thead>
</table>
| Governance | PSEG LI President, COO
 | Dan Eishhorn |
| Oversight | PSEG LI VP T&D
 | John O'Connell |
| Core Team | Steering Committee
 | Mike Sullivan
 | Pat Hession |
| | Business Leads
 | Mali Otto
 | Dan Wiedstrom |
Role | Name | Responsibilities
--- | --- | ---
Steering Committee | Dan Eichhorn
John O’Connell | • Championing the PSEG LI Storm Restoration initiative
• Establishing guiding principles for the project
• Ensuring project activities remained aligned with the guiding principles as defined
• Providing guidance and input on key project decisions
• Challenging the project team where appropriate
• Approving major changes to the project’s scope, objectives, timelines, costs, etc.
• Acting as the decision maker for issues requiring escalation
• Removing institutional barriers when they arise by serving as a project advocate
Steering Committee | Mike Sullivan
Patrick Hession | • Providing guidance and input on key project decisions
• Assisting in the procurement of external parties (as needed)
• Removing obstacles that impede the success of the overall project
• Providing subject matter expertise to the project
• Challenging the project team
Business Lead | Matthew Otto
Dan Wickstrom
Valerie Himelewski | • Process development, requirements definition
• Establishing criteria and guidance for implantation and execution
• Testing Execution
• Fund Reimbursement

3.2. Other Stakeholders

LIPA
Damage Assessment Staff
Crew Dispatching Staff
Emergency Preparedness/Situational Awareness
Office of Government Funds Compliance (OFGC)
4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Task</th>
<th>Recommendation</th>
<th>Current Status</th>
<th>Pct. Complete</th>
<th>Target Start Date</th>
<th>Target End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Primary</td>
<td>Establish criteria for activated circuit sweep</td>
<td>In Progress</td>
<td></td>
<td>01/19/2021</td>
<td>04/15/2021</td>
</tr>
<tr>
<td></td>
<td>Subtask</td>
<td>restoration plan</td>
<td></td>
<td>01/25/2021</td>
<td>02/05/2021</td>
<td></td>
</tr>
<tr>
<td>5.51</td>
<td>Subtask</td>
<td>Define what a circuit sweep restoration plan is</td>
<td>In Progress</td>
<td>50%</td>
<td>01/25/2021</td>
<td>02/28/2021</td>
</tr>
<tr>
<td>5.52</td>
<td>Subtask</td>
<td>Create criteria that will trigger a decision point</td>
<td>Not Started</td>
<td>25%</td>
<td>01/25/2021</td>
<td>02/28/2021</td>
</tr>
<tr>
<td>5.53</td>
<td>Subtask</td>
<td>Define how to implement this restoration model</td>
<td>Not Started</td>
<td>25%</td>
<td>02/28/2021</td>
<td>03/31/2021</td>
</tr>
<tr>
<td>5.54</td>
<td>Subtask</td>
<td>Develop techniques and processes to support</td>
<td>Not Started</td>
<td>0%</td>
<td>02/28/2021</td>
<td>03/31/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>circuit sweep implementation and execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Include feedback from OFGC on technics to ensure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reimbursement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.55</td>
<td>Subtask</td>
<td>Establish a process for feedback and updates on</td>
<td>Not Started</td>
<td>0%</td>
<td>04/01/2021</td>
<td>04/15/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a circuit level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.56</td>
<td>Subtask</td>
<td>Update ERP documentation to include these new</td>
<td>Not Started</td>
<td>0%</td>
<td>04/15/2021</td>
<td>04/30/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>criteria, definitions and implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.57</td>
<td>Subtask</td>
<td>Train affected people in the organization on the</td>
<td>Not Started</td>
<td>0%</td>
<td>05/01/2021</td>
<td>05/15/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new criteria, definition and implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Risk Management Plan

The table below outlines the applicable risks and associated risk mitigations for the circuit sweep project.

<table>
<thead>
<tr>
<th>Category</th>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td>Quantity of employees trained to be tag holders could limit number of circuits</td>
<td>Comprehensive review of all tag holders assignments and exploration of training additional ones.</td>
</tr>
<tr>
<td></td>
<td>that could be assigned circuit sweep activation.</td>
<td></td>
</tr>
<tr>
<td>Customer</td>
<td>Missing an outage during circuit sweep activation either through missing</td>
<td>Continued customer callback outreach program throughout storm event.</td>
</tr>
<tr>
<td></td>
<td>field observation or mis-tagged outage ticket.</td>
<td></td>
</tr>
</tbody>
</table>
4.3. Issue Resolution Plan

Any issues that arise will be escalated through the Distribution Survey and Operations Control Division Supervisors and an action plan will be enacted to ensure timely solution. If issues mount, a circuit sweep issue tracker will be established to track items to closure.

4.4. LIPA Reporting Plan

Weekly status reports will be provided to the East and West Senior Directors until closure.

5. Technical Execution Plan

5.1. Technical Approach

Gather and review feedback from Company Stakeholders to assess the effectiveness of the criteria and impact of implementation and execution.

5.2. Quality Assurance Plan

Once the project tasks are established and completed, they will be reviewed by Emergency Preparedness to ensure alignment with current storm processes and resources allocation for storm assignments. They will ensure that this project will improve storm response and create efficient use of resources.

5.3. Documentation Plan

<table>
<thead>
<tr>
<th>Document</th>
<th>Created By</th>
<th>Reviewed By</th>
<th>Target Date</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Otto / Dan Wickstrom</td>
<td>01/21/2021</td>
<td>initial draft</td>
<td>1.0 draft 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PSEG Long Island

Project Implementation Plan

for

Isaias Task Force
Recommendation Implementations

Recommendation No. 5.12

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>90 Day Report</td>
<td>Improve Training for Remote Dispatch Authority, Including on BCPs. Prepare to implement Remote Command Authority, when advantageous.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Project Definition ... 1
 1.1. Project Purpose, Objectives, and Success Criteria .. 1

2. Project Deliverables: .. 1
 2.1. Assumptions, Dependencies, and Constraints ... 2

3. Project Structure ... 3
 3.1. Internal Project Organization ... 3
 3.2. Other Stakeholders ... 3

4. Project Plan .. 4
 4.1. Project Work Plan .. 4
 4.2. Risk Management Plan .. 5
 4.3. Issue Resolution Plan ... 5
 4.4. LIPA Reporting Plan .. 5

5. Technical Execution Plan ... 5
 5.1. Technical Approach ... 5
 5.2. Quality Assurance Plan .. 5
 5.3. Documentation Plan ... 5
1. Project Definition

The project aims to improve storm restoration by utilizing the Remote Dispatch Authority’s and Remote Command Authority’s most effectively. Additionally, dispatch authorities should be prepared to execute BCPs in the event of a loss of OMS or other storm related systems.

The purpose of Remote Command Authority (RCA) or “Local Circuit Control” is to decentralize outage restoration efforts from a divisional headquarters when outage analysis and crew control are no longer practical, or when off-island resources exceed the dispatch capability of existing dispatch centers. While in local circuit control, remote dispatch areas are granted configuration authority in compact geographic areas to maintain better crew control in addition to more localized and robust damage assessment and repair.

Local control is desirable when extensive damage is experienced in an area or when outside utility crews and contractor crews are brought in for assistance. Determination of the need for local control will be based on certain factors.

Also, training for members of Remote Dispatch Authority (RDA) groups shall be outlined including what training is provided and the frequency of training.

1.1. Project Purpose, Objectives, and Success Criteria

Project Objectives:

Improve storm restoration by utilizing the Remote Dispatch Authority’s and Remote Command Authority’s most effectively. To accomplish this goal, the organization will enhance the training for RDA & RCA personnel. Project objectives include:

- Restructuring the training format, scheduling, and curriculum.
- Incorporate BCP training in the event of a loss of OMS.
- Provide specialized Local Circuit Control training for RCA personnel and tag holders.

In addition, the project aims to develop clear activation criteria for RCA’s or Local Circuit Control.

Project End State and Success Criteria:

Upon project completion, an enhanced RDA/RCA training program will be established and implemented. The supplemental storm resources will have an improved understanding of storm restoration, business continuity plan, and Local Circuit Control. In addition, the RCA activation criteria will be communicated to all stakeholders.

2. Project Deliverables:

Describe applicable Project Deliverables:

- Enhanced training program for RDA operations
- Training schedule for RDA operations
- RDA leader assessment and adjustments
- ERP updates
2.1. Assumptions, Dependencies, and Constraints

- Emergency Preparedness will provide resources to train RDA/RCA personnel.
- RDA/RCA personnel are available to attend training.
- RDA/RCA personnel have a basic knowledge of the distribution system.

3. Project Structure

3.1. Internal Project Organization

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Responsibilities</th>
</tr>
</thead>
</table>
| Project Implementation Team | Miceli, Campbell, Norgard, Hewlett, Jarymiszyn | • Establishing guiding principles for the project
| | | • Ensuring project activities remained aligned with the guiding principles as defined
| | | • Providing guidance and input on key project decisions
| | | • Challenging the project team where appropriate
| | | • Approving major changes to the project’s scope, objectives, timelines, costs, etc.
| | | • Acting as the decision maker for issues requiring escalation
| | | • Developing clear activation criteria for RCA’s or Local Circuit Control. |
| Emergency Preparedness Team | Plackis, Torres, Bryson | • Provide specialized Local Circuit Control training for RCA personnel and tag holders.
| | | • Restructuring the training format, scheduling, and curriculum.
| | | • Incorporating BCP training in the event of a loss of OMS. |
| RDA/RCA Employees | MAC’s Dispatch Area Coordinators, Dispatch Area Tag Holders, Dispatch Area Operators | • Full participation in training |

3.2. Other Stakeholders

LIPA
Emergency Preparedness
Crew Dispatch Personnel
Damage Assessment Dispatch Personnel
4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Task</th>
<th>Recommendation</th>
<th>Current Status</th>
<th>Pct. Complete</th>
<th>Target Start Date</th>
<th>Target End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Review storm protocols and procedures</td>
<td>Complete</td>
<td>100%</td>
<td>01/20/2021</td>
<td>01/20/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Evaluate existing RDA training and look for opportunity for improvement</td>
<td>Not started</td>
<td>0%</td>
<td>02/01/2021</td>
<td>03/01/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Evaluate capabilities of the RDA Leads. Recommend and implement changes to roles based on capabilities</td>
<td>Not started</td>
<td>0%</td>
<td>02/08/2021</td>
<td>03/01/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Incorporate BCP material into training curriculum</td>
<td>Not started</td>
<td>0%</td>
<td>02/01/2021</td>
<td>03/01/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Develop new RCA material and incorporate into training curriculum</td>
<td>In progress</td>
<td>75%</td>
<td>01/20/2021</td>
<td>03/01/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Evaluate training duration, schedule and training frequency</td>
<td>Not started</td>
<td>0%</td>
<td>02/01/2021</td>
<td>03/15/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Develop training attendance tracker</td>
<td>Not started</td>
<td>0%</td>
<td>02/01/2021</td>
<td>03/15/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Incorporate BCP drills/simulations</td>
<td>Not started</td>
<td>0%</td>
<td>03/01/2021</td>
<td>03/15/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Subtask</td>
<td>Incorporate RCA drills/simulations</td>
<td>Not started</td>
<td>0%</td>
<td>03/01/2021</td>
<td>03/15/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Primary</td>
<td>Develop clear activation criteria for RCA’s or Local Circuit Control.</td>
<td>Not started</td>
<td>0%</td>
<td>02/01/2021</td>
<td>03/15/2021</td>
</tr>
<tr>
<td>Primary</td>
<td>Primary</td>
<td>Deploy enhanced RDA/RCA training.</td>
<td>Not started</td>
<td>0%</td>
<td>03/15/2021</td>
<td>05/01/2021</td>
</tr>
</tbody>
</table>
4.2. Risk Management Plan

<table>
<thead>
<tr>
<th>Category</th>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td>Inadequate staffing of RDA or inadequate amount of trained personnel</td>
<td>PSEG LI to fully staff each RDA and ensure training is provided into primary/secondary alternate roles.</td>
</tr>
<tr>
<td>Schedule</td>
<td>Timeliness of training rollout.</td>
<td>EP to ensure training is completed.</td>
</tr>
<tr>
<td>Resources</td>
<td>Lack of qualified trainers or SME’s.</td>
<td>EP to ensure adequate trainers.</td>
</tr>
</tbody>
</table>

4.3. Issue Resolution Plan

The project team and EP will have frequent communications to discuss any issues or risks that may occur. The project team and EP will determine the appropriate actions (if necessary) to get the project on track.

4.4. LIPA Reporting Plan

TBD

5. Technical Execution Plan

5.1. Technical Approach

Review storm processes, establish training curriculum and schedule, and roll out training.

5.2. Quality Assurance Plan

Following the RDA/RCA training, trainers or SME’s will evaluate the success of the storm drill.

5.3. Documentation Plan

Throughout the project lifecycle, the implementation team will document and deliver the key deliverables as listed above in Section 2. The due date of each deliverable will be based off the Project Schedule as outlined in Section 4.1.

<table>
<thead>
<tr>
<th>Project Artifacts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Documents</td>
<td>RDA/RCA training information</td>
</tr>
<tr>
<td>BCP for loss of OMS</td>
<td>Storm restoration and tracking in the event of a loss of OMS</td>
</tr>
<tr>
<td>Training Attendance Record</td>
<td>Tracks training attendance</td>
</tr>
<tr>
<td>RCA activation criteria</td>
<td>Outlines strategy for RCA activation</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miceli</td>
<td>1/20/20</td>
<td>initial draft</td>
<td>1.0 draft 1</td>
</tr>
</tbody>
</table>
PSEG Long Island Project Implementation Plan for Isaias Task Force Recommendation Implementations

Project Title: Utilize National Grid and Local Electrician Resources for Low-Voltage repairs

The following Isaias Task Force recommendation is directly addressed as part of this plan:

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>90 Day Report</td>
<td>Explore using National Grid resources and local electrician resources for emergencies. Work with National Grid and local electrical contractors to train a workforce to make repairs to low-voltage service drops.</td>
</tr>
<tr>
<td>5.4.3</td>
<td>30 Day Report</td>
<td>Investigating the use of electricians for low-voltage service restoration.</td>
</tr>
<tr>
<td>5.4.4</td>
<td>30 Day Report</td>
<td>Increasing the utilization of local National Grid gas and generation system employees for wire down and damage assessment.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Project Definition ... 2
 1.1. Project Purpose, Objectives, and Success Criteria ... 2

2. Project Deliverables ... 3
 2.1. Assumptions, Dependencies, and Constraints ... 3

3. Project Structure ... 3
 3.1. Internal Project Organization ... 3
 3.2. Other Stakeholders .. 4

4. Project Plan ... 4
 4.1. Project Work Plan ... 4
 4.2. Risk Mitigation Plan .. 4

Error! Bookmark not defined.
1. Project Definition

PSEG Long Island maintains an Emergency Assistance Agreement with National Grid Gas (Long Island). Current efforts are underway to expand this to National Grid Generation Co. Personnel. The current agreement allows National Grid to provide local personnel and equipment to support restoration efforts during major events, when PSEG Long Island requests emergency assistance. However, this support does not include resources capable of assisting with low-voltage restoration of electric facilities. The Purpose of this project is to explore the feasibility of using National Grid, along with using local electrician resources (IBEW Local 25 – Long Island & IBEW Local 3 - NYC) during emergencies specific to repair of low-voltage service facilities.

The recommendation is directly addressed and detailed in this plan. Dialog has already commenced and future discussions are scheduled by February 15th, 2021.

1.1. Project Purpose, Objectives, and Success Criteria

1.1.1 Project Objectives:

During major outage events, supplemental high-voltage resources may be brought to assist with restoration efforts. This project will explore the feasibility of bringing in low-voltage resources to assist with low-voltage restoration on customer services from pole to house that can be completed simultaneously as high-voltage work is being performed. The work involved consists of all services, labor, equipment, materials and any other incidental services in connection with the repair and replacement of 120/240 volt, single-phase service conductors from pole to house only, which is work that qualified electricians are trained to perform.

The overall objective is to improve restoration time of low voltage overhead single outages and have additional resources to address single customer escalations including Life Saving Equipment (LSE) and special need customers.

1.1.2 Project Scope:

- Explore interest and capability of National Grid and local licensed electricians for participation in program
- Modify existing Emergency Assistance Agreement with National Grid
- Work with Training Support & Contractor Services to develop training
- Discussions with IBEW Local 1049 to address any concerns
- Issue Request for Proposal to interested vendors
- Award FEMA complaint contracts to multiple vendors
- Ensure availability of Low Voltage Storm Kits for increased low voltage resources
- Develop onboarding Program modified for Low Voltage Resources
- Ensure 2-person Crew Organization is staffed for dispatching of increased Low–voltage Resources

1.1.3 Project End State and Success Criteria:

Success criteria includes a measureable increase in the number of low voltage resources available to restore customers during storms. End state includes visibility to possible number of resources available for each source, appropriate contracts in place with the appropriate entity, clearly
developed training programs and organizational structures to support increased low voltage resources.

2. Project Deliverables

This project will deliver

- Material to quantify potential availability of low voltage resources form National Grid, Local electrical contractors, and non-affiliated utility contractors
- Contract documents applicable to any of the low voltage resource providers
- Training programs for any of the low voltage resources
- Summary of organizational changes required to support increased use of low voltage resources

2.1. Assumptions, Dependencies, and Constraints

The success of the project will depend on: National Grid’s willingness to participate and have employees trained to work on LIPA’s low-voltage facilities – along with the interest from Local 25 & Local 3 to supply electricians to support PSEG Long Island during storm events and if they are willing to sign a contract with PSEG Long Island for these services. The number of available low voltage resources will be dependent on the vendor’s availability during the time of the request. Awarding of contract to multiple vendors is recommended.

3. Project Structure

3.1. Internal Project Organization

Michael Sullivan will be the Sponsor for this Project. John O’Connell will provide key executive level support and subject-matter expertise, along with Michael Sullivan.

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Sponsor</td>
<td>• Manage issues and decision making</td>
</tr>
<tr>
<td>Michael Sullivan</td>
<td>• Remove obstacles that impede the success of the overall project</td>
</tr>
<tr>
<td></td>
<td>• Provide strategic guidance</td>
</tr>
<tr>
<td></td>
<td>• Approve procurement of external parties (as needed)</td>
</tr>
<tr>
<td></td>
<td>• Establish guiding principles for the project</td>
</tr>
<tr>
<td></td>
<td>• Provide guidance and input on key project decisions</td>
</tr>
<tr>
<td></td>
<td>• Monitor completion of activities</td>
</tr>
<tr>
<td></td>
<td>• Challenge the project team where appropriate</td>
</tr>
<tr>
<td></td>
<td>• Approve major changes to the project’s scope, objectives, timelines, costs, etc.</td>
</tr>
<tr>
<td></td>
<td>• Act as the decision maker for issues requiring escalation</td>
</tr>
<tr>
<td></td>
<td>• Remove institutional barriers if and when they arise by serving as a project advocate</td>
</tr>
</tbody>
</table>
3.2. Other Stakeholders

The other key stakeholders involved in the execution of this plan are:
- National Grid
- LIPA
- IBEW 1049
- Training Support & Contractor Services
- Procurement

4. Project Plan

4.1. Project Work Plan

Plan Milestones

<table>
<thead>
<tr>
<th>Task</th>
<th>Owner</th>
<th>Current Status</th>
<th>Target End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meet with Local 1049 to discuss use of local electricians and identify any issues</td>
<td>M. Sullivan</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Query non-affiliated contractors for availability of LV Workers</td>
<td>E. Cohen</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Develop and Issue RFI to local electricians</td>
<td>E. Cohen</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Evaluate RFI and hold discussion with potential vendors</td>
<td>Torres/Cohen</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Develop and Review local electrician RFP document before releasing</td>
<td>E. Cohen</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Identify and develop training needs/programs for electrical contractors</td>
<td>B. Fitzgerald</td>
<td>Pending</td>
<td>2/12/2021</td>
</tr>
<tr>
<td>Discuss interest with National Grid and come to agreement on storm assist opportunities</td>
<td>L. Torres</td>
<td>In Progress</td>
<td>2/15/2021</td>
</tr>
<tr>
<td>Identify organization changes required to support increased LV workers</td>
<td>L. Debrino</td>
<td>Pending</td>
<td>3/1/2021</td>
</tr>
<tr>
<td>Train organization on changes required to support increased LV workers</td>
<td>L. Debrino</td>
<td>Pending</td>
<td>3/31/2021</td>
</tr>
<tr>
<td>Develop Process to utilize non-affiliated contractors for LV workers</td>
<td>L. Torres</td>
<td>Pending</td>
<td>5/1/2021</td>
</tr>
<tr>
<td>Develop Requirements for emergent use of LV electricians</td>
<td>L. Torres</td>
<td>Pending</td>
<td>5/1/2021</td>
</tr>
<tr>
<td>If National Grid agrees to perform LV work, develop contract and agree on terms</td>
<td>L. Torres</td>
<td>Not Started</td>
<td>5/1/2021</td>
</tr>
<tr>
<td>If National Grid agrees to perform LV work, identify and develop training needs/programs for National Grid employees</td>
<td>B. Fitzgerald</td>
<td>Not Started</td>
<td>7/1/2021</td>
</tr>
<tr>
<td>Release RFP and Award Contracts</td>
<td>E. Cohen</td>
<td>Pending</td>
<td>8/1/2021</td>
</tr>
</tbody>
</table>
4.2. Risk Mitigation Plan

<table>
<thead>
<tr>
<th>Category</th>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td>National Grid not supportive of performing Low Voltage work</td>
<td>Listen for understanding/creative solutions to address concerns</td>
</tr>
<tr>
<td>Resources</td>
<td>Risk of other vendor work impacts degree to which low voltage resources become available to support storms</td>
<td>Monitor availability/Make request for resources earlier</td>
</tr>
<tr>
<td>Productivity</td>
<td>Lack of effectiveness due to weak training</td>
<td>Quality training program</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. De Pascale</td>
<td>1/20/2021</td>
<td>Created</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Project Title:

Recommendation No.:

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Report</th>
<th>Task Force recommendations directly addressed in this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16</td>
<td>90 Day Report</td>
<td>Review restoration verification protocols under "no-OMS" scenarios and ensure that they function efficiently. Leverage the AMI data in OMS to efficiently identify nested outages (the AMI portion of this recommendation has been addressed in Project Plan 5.4.2)</td>
</tr>
</tbody>
</table>
Table of Contents

1. Project Definition ... 1
 1.1. Project Purpose, Objectives, and Success Criteria .. 1

2. Project Deliverables: ... 1
 2.1. Assumptions, Dependencies, and Constraints ... 1

3. Project Structure .. 2
 3.1. Internal Project Organization .. 2
 3.2. Other Stakeholders .. 2

4. Project Plan .. 2
 4.1. Project Work Plan .. 2
 4.2. Risk Management Plan .. 2
 4.3. Issue Resolution Plan .. 2
 4.4. LIPA Reporting Plan .. 3

5. Technical Execution Plan ... 3
 5.1. Technical Approach ... 3
 5.2. Quality Assurance Plan .. 3

6. Project Artifacts
1. Project Definition

Review restoration verification protocols under "no-OMS" scenarios and ensure that they function efficiently – On December 17, PSEG LI submitted to LIPA Release 1 Restoration Contingency Plans for loss of critical systems including the Outage Management System (OMS). Included in the plan are Dispatch and Restoration Strategies and Call Center Operating Strategies to describe the process for a loss of OMS. On January 7, LIPA wrote a letter to PSEG indicating that the Restoration Contingency Plans needed substantial revisions. Specifically, LIPA recommended that PSEG LI revise the plans to include the embedded artifact (LIPA January 7 feedback on PSEG contingency plan Release 1). PSEG Long Island has committed to incorporating those comments and incorporating procedures for power on verifications during OMS contingencies.

The plan elements below will apply to the “Power on - no OMS” recommendation.

1.1. Project Purpose, Objectives, and Success Criteria

Project Objectives:

As part of the overall Restoration Contingency Plans for loss of Critical restoration systems, deploy “power on” verifications without a functioning OMS system,

Project End State and Success Criteria:

Effective, documented process to complete power on verification in OMS contingency work around plans

2. Project Deliverables:

- The completed review of restoration verification protocols under "no-OMS" scenarios and insurance that they function efficiently
- Testing Guidance Document
- Training Guidance Document
- Meeting with LIPA to review how the plan incorporates into the overall all-hazards emergency management framework

2.1. Assumptions, Dependencies, and Constraints

Assumption:

Power On verification with no OMS - Reasonable actions can be taken to complete power on verification without a functioning OMS

Dependencies:

PSEG LI effort to develop BCO work around for loss of OMS
PSEG LI efforts to deploy AMI and to deliver enhancements associated with OMS

Constraints:
Process capabilities and systems capabilities

3. Project Structure

3.1. Internal Project Organization

John O’Connell will sponsor the OMS contingency BCP development. John O’Connell and Rick Walden will co-sponsor the AMI to OMS enhancements.

Other Stakeholders:
- IT Department
- Customer Services Department
- T&D Department

4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>Task</th>
<th>Owner</th>
<th>Current Status</th>
<th>Target End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop Release 1 plan</td>
<td>Larry Torres</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Get LIPA feedback on Release 1 plan</td>
<td>Larry Torres</td>
<td>Complete</td>
<td>Received January 7, 2021</td>
</tr>
<tr>
<td>Integrate LIPA feedback into plan</td>
<td>Larry Torres</td>
<td>Complete</td>
<td>January 31, 2021</td>
</tr>
<tr>
<td>Develop steps in contingency ERIP related to power on verifications</td>
<td>Larry Torres</td>
<td>Complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Develop a Plan Test/Drill Guidance Document</td>
<td>Larry Torres</td>
<td>In progress</td>
<td>February 15, 2021</td>
</tr>
<tr>
<td>Develop a Plan Training Guidance Document</td>
<td>Larry Torres</td>
<td>In progress</td>
<td>February 15, 2021</td>
</tr>
<tr>
<td>Review with LIPA the revised plan and how the plan incorporates into the overall all-hazards emergency management framework</td>
<td>Larry Torres</td>
<td>Pending</td>
<td>March 1, 2021</td>
</tr>
</tbody>
</table>

4.2. Risk Management Plan

<table>
<thead>
<tr>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
</table>
4.3. Issue Resolution Plan

Project Sponsors will monitor progress and issues and collaborate to resolve issues.

4.4. LIPA Reporting Plan

The established project reporting process will be utilized.

5. Technical Execution Plan

5.1. Technical Approach

For the non-OMS power on verification, there are no significant technical issues that require additional action beyond the project plan, above.

5.2. Quality Assurance Plan

Project sponsor oversight and approval of deliverables will be required.

6. Project Artifacts

<table>
<thead>
<tr>
<th>Project Artifacts</th>
<th>Artifact</th>
</tr>
</thead>
</table>

Revision History
<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larry Torres</td>
<td>01/07/21</td>
<td>Draft 1</td>
<td>1.0</td>
</tr>
<tr>
<td>Larry Torres</td>
<td>01/13/21</td>
<td>Include LIPAs feedback</td>
<td>1.0 v2</td>
</tr>
<tr>
<td>Jason Goldsmith</td>
<td>02/01/21</td>
<td>Include LIPAs feedback dated 1/27/21</td>
<td>1.0 v3</td>
</tr>
</tbody>
</table>
PSEG Long Island
Project Implementation Plan

For

Isaias Task Force Recommendation Implementations

Recommendation No. 5.17

Project Title: (LSE) Life Sustaining Equipment Customers Enhancements

<table>
<thead>
<tr>
<th>LIPA ID</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>Benchmark the PSEG Long Island process to maintain the LSE customer list to the best practices used by other New York utilities. Evaluate the success of the 2020 LSE recertification and implement corrective actions so that 95 percent or more of LSE customers recertify their needs and update their contact information each year</td>
</tr>
</tbody>
</table>
Table of Contents

1. **Project Definition** .. 1
 1.1. Project Purpose, Objectives, and Success Criteria ... 1

2. **Project Deliverables:** ... 2
 2.1. Assumptions, Dependencies, and Constraints ... 2

3. **Project Structure** ... 2
 3.1. Internal Project Organization ... 2
 3.2. Other Stakeholders .. 2

4. **Project Plan** ... 3
 4.1. Project Work Plan ... 3
 4.2. Risk Management Plan .. 4
 4.3. Issue Resolution Plan ... 4
 4.4. LIPA Reporting Plan ... 4

5. **Technical Execution Plan** .. 5
 5.1. Technical Approach .. 5
 5.2. Quality Assurance Plan .. 5
 5.3. Documentation Plan ... 5
1. Project Definition

PSEG Long Island offers a Critical Care Program for Life Sustaining Equipment customers who rely on electricity to operate life support equipment, such as a respirator or oxygen concentrator, or for whom a disruption in service would create a medical emergency. PSEG Long Island’s management of the Critical Care Program is required to comply with various New York State regulatory guidelines.

A 2018 audit of the Life Sustaining Equipment process was conducted by the Long Island Power Authority (LIPA) and led to the creation of PSEG Long Island’s Customer Safeguard Solutions group, which is responsible for managing the Critical Care Program. PSEG Long Island met with several NYS electric utilities and participated in the twice a year meeting of the Complaint Managers Users Group (CMUG) to gather best practices around Life Sustaining Equipment customer oversight and used that information to develop the procedures for daily operations and maintenance of the LSE customer list. The 20/21 LSE recertification process, which is currently in progress, incorporates best practices gathered from that exercise. In October 2019, when the Customer Safeguard Solution group began handling the Life Sustaining Equipment customer list contained 6,978 Life Sustaining Equipment customers. As of December 28, 2020 the list had been reduced to 5,871 customers, with Customer Safeguard Solutions processing 1,885 removals and 778 additions from the list.

This project seeks to continue to benchmark best practices among New York State utilities as a means to identify additional process improvements such that “more Life Sustaining Equipment customers recertify their needs and update their contact information each year”. An up to date Life Sustaining Equipment customer list is vital during storm events. If the Life Sustaining Equipment designation is outdated or inaccurate, Life Sustaining Equipment customers may not receive the assistance afforded them through the Program and/or resources being diverted to unnecessary calls and field visits, leading to inefficiencies in execution of the Critical Care Program.

1.1. Project Purpose, Objectives, and Success Criteria

Project Objectives: The objective of this project is to ensure that Customer Safeguard Solutions is utilizing best practices to maintain the most up to date Life Sustaining Equipment customer list. Without an efficient annual recertification of Life Sustaining Equipment customers, the status of the Life Sustaining Equipment customer list may be outdated, and/or contain inaccurate contact information. During a storm event, resources could therefore be directed towards unnecessary calls and field visits to customers whose Life Sustaining Equipment designation is outdated, while inaccurate contact information may result in the inability to contact those in need.

Project End State and Success Criteria: The success of this project will be that Customer Safeguard Solutions is successfully incorporating practices to maintain the most up to date Life Sustaining Equipment customer list which is considered best practice and positions itself to achieve first quartile performance in three years.
2. Project Deliverables:

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Delivery Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark the PSEG Long Island’s Life Sustaining Equipment process to maintain the Life Sustaining Equipment customer list to the best practices used by other New York State utilities and determine what first quartile looks like.</td>
<td>March 31, 2021</td>
<td>Document benchmarking response received.</td>
</tr>
</tbody>
</table>

2.1. Assumptions, Dependencies, and Constraints

The benchmarking outcome is dependent upon the cooperation and response from the other New York State utilities.

The outcomes of the recertification process is dependent upon the responsiveness by the Life Sustaining Equipment customers.

The outcomes of the maintenance of the list are dependent upon the final removal approval from the New York State Department of Public Service.

3. Project Structure

3.1. Internal Project Organization

PSEG Long Island

Executive Sponsor: Richard Walden

Project Manager: Brigitte Wynn

Product Owner: Gina M. Director

SMEs: Gina Todd-Walker

3.2. Other Stakeholders

Complaint Managers Users Group (CMUG) - a group of managers from New York State’s major gas and electric utilities, including those leads responsible for their Critical Care Programs

LIPA

New York State Department of Public Service
4. Project Plan

4.1. Project Work Plan

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Task</th>
<th>Due Date</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create benchmarking questions to send to the Complaint Managers User Group</td>
<td>1/14/2021</td>
<td>In progress</td>
<td>12/11/2020 – met with N. Nolau to discuss how to draft questions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12/29/2020 – sent draft to B. Wynn, N. Nolau and G. Todd-Walker for review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/11/2021 – reviewed with J. Greenblatt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/12/2021 – drafting additional questions</td>
</tr>
<tr>
<td></td>
<td>Review benchmarking questions with LIPA</td>
<td>1/14/2021</td>
<td>In progress</td>
<td>1/11/2021 – sent to LIPA for review</td>
</tr>
<tr>
<td></td>
<td>Send benchmarking questions to Complaint Managers User Group</td>
<td>1/15/2021</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receive benchmarking questions responses</td>
<td>1/26/2021</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule follow up discussions, as needed, with New State utilities</td>
<td>1/29/2021</td>
<td>Complete</td>
<td>Scheduled for Week of Feb 1, 2021</td>
</tr>
<tr>
<td></td>
<td>Meet with LIPA to discuss benchmarking exercise</td>
<td>3/31/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>findings/recommendations of best practices for adoption by PSEG Long Island, and provide summary documentation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update Life Sustaining Equipment customer recertification process (appendix) based upon best practices identified and provide documentation.</td>
<td>4/30/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable</td>
<td>Task</td>
<td>Due Date</td>
<td>Status</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Evaluate the success of the 20/21 Life Sustaining Equipment recertification.</td>
<td>Complete the 20/21 Life Sustaining Equipment Rectification process.</td>
<td>10/31/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Appendix for details of the Rectification process.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Document the outcomes of 20/21 recertification and any best practices adopted.</td>
<td>10/31/2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Risk Management Plan

This initiative is highly dependent on the responses received back from the New York State utilities. Some risk and mitigations plans are identified as follows:

<table>
<thead>
<tr>
<th>Project Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York State utilities may not support this initiative</td>
<td>• Good communication across all parties through participation in CMUG</td>
</tr>
<tr>
<td></td>
<td>• Creative efforts to address any concerns the New York State utilities may have</td>
</tr>
<tr>
<td></td>
<td>• Senior Executive involvement</td>
</tr>
<tr>
<td>There may be best practices identified that may require significant technological and/or financial commitments.</td>
<td>• We will follow current PSEG Long Island project management and resource allocation processes.</td>
</tr>
</tbody>
</table>

4.3. Issue Resolution Plan

Project lead will keep track of action items. Progress will be reported to Jason Goldsmith, overall project manager.

4.4. LIPA Reporting Plan

PSEG Long Island would like to have monthly executive overview meetings with LIPA; the meeting would review completed tasks, open tasks to date, missed dates, and decision points.
5. Technical Execution Plan

5.1. Technical Approach

There are no technical approaches required beyond the steps outlined in the above project plan.

5.2. Quality Assurance Plan

LIPA and PSEG LI Leadership will be apprised of status to assure quality.

5.3. Documentation Plan

<table>
<thead>
<tr>
<th>Document</th>
<th>Created By</th>
<th>Reviewed By</th>
<th>Target Date</th>
<th>Dist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document benchmarking responses received.</td>
<td>PSEG Long Island</td>
<td>PSEG Long Island and LIPA</td>
<td>3/31/2021</td>
<td></td>
</tr>
<tr>
<td>Document any changes to Life Sustaining Equipment customer recertification process (appendix) based upon best practices identified.</td>
<td>PSEG Long Island</td>
<td>PSEG Long Island and LIPA</td>
<td>4/30/2021</td>
<td></td>
</tr>
<tr>
<td>Document the outcomes of 20/21 recertification and any best practices adopted.</td>
<td>PSEG Long Island</td>
<td>PSEG Long Island and LIPA</td>
<td>10/31/2021</td>
<td></td>
</tr>
<tr>
<td>Document the update of any internal procedures, ERIPS, etc. that are effected by best practice adoption and any necessary training required.</td>
<td>PSEG Long Island</td>
<td>PSEG Long Island and LIPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Reason for Changes</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gina M. Director</td>
<td>12/31/2020</td>
<td>initial draft</td>
<td>1.0 draft 1</td>
</tr>
</tbody>
</table>

Appendix

Details of Life Sustaining Equipment customer recertification process

<table>
<thead>
<tr>
<th>Task</th>
<th>Due Date</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finalized Recertification Letter and Medical Form</td>
<td>9/28/2020</td>
<td>Completed</td>
<td>Worked with LIPA to enhance the letter</td>
</tr>
<tr>
<td>Mail first recertification letter to all designated Life Sustaining Equipment customers via USPS</td>
<td>10/8/2020</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Evaluate issues, if any, from first mailing</td>
<td>10/31/2020</td>
<td>Completed</td>
<td>Some letters came back unsigned because of the location of the signature line. The recertification letter has been update to correct this. Resent any unsigned letters to Life Sustaining Equipment customer with instructions to add signature.</td>
</tr>
<tr>
<td>Mail second recertification letter to all designated Life Sustaining Equipment customers who did not respond to the first letter, in an orange envelope for increased</td>
<td>12/31/2020</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Date</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Provide weekly update to LIPA of Life Sustaining Equipment customer list</td>
<td>12/29/2020</td>
<td>On going</td>
<td></td>
</tr>
<tr>
<td>Evaluate issues, if any, from second mailing and make any necessary changes. Track response rate.</td>
<td>1/15/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mail third recertification letter to all designated Life Sustaining Equipment customers who did not respond to the second letter, via certified USPS.</td>
<td>2/12/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate issues, if any, from third mailing and make any necessary changes. Track response rate.</td>
<td>2/28/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On a case by case basis, field visits may be required for Life Sustaining Equipment customers who did not respond to the third mailing.</td>
<td>Beginning March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly mailing to those non-respondent Life Sustaining Equipment customers</td>
<td>Beginning March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly meetings with DPS to review removal request status</td>
<td>3/31/2021</td>
<td>6/30/2021 9/30/2021 12/31/2021</td>
<td></td>
</tr>
</tbody>
</table>